The use of homotopy methods for solving nonlinear foam drainage equation

作者: Sh. Sadigh Behzadi

DOI: 10.5899/2014/CACSA-00021

关键词:

摘要: Foaming occurs in many distillation and absorption processes. The drainage of liquid foams involves the interplay gravity, surface tension, viscous forces. In this paper, nonlinear foam equation is solved by using Adomian's decomposition method, modified variational iteration homotopy perturbation method analysis method. existence uniqueness solution convergence proposed methods are proved details. Finally an example shows accuracy these methods.

参考文章(35)
Abdul-Majid Wazwaz, A First Course in Integral Equations ,(1997)
Saad A. Khan, Robert K. Prud’homme, Foams: Theory: Measurements: Applications ,(1995)
J. J. Bikerman, Foams : theory and industrial applications Reinhold. ,(1953)
Lorna J. Gibson, Michael F. Ashby, Cellular Solids: Structure and Properties ,(1988)
D. Weaire, S. Hutzler, G. Verbist, E. Peters, A Review of Foam Drainage Advances in Chemical Physics. ,vol. 102, pp. 315- 374 ,(2007) , 10.1002/9780470141618.CH5
M. Durand, D. Langevin, Physicochemical approach to the theory of foam drainage European Physical Journal E. ,vol. 7, pp. 35- 44 ,(2002) , 10.1140/EPJE/I200101092
Pierre-Gilles de Gennes, The physics of foams ,(1999)
Ahmet Yıldırım, Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method Computers & Mathematics With Applications. ,vol. 56, pp. 3175- 3180 ,(2008) , 10.1016/J.CAMWA.2008.07.020
S.H. Behiry, H. Hashish, I.L. El-Kalla, A. Elsaid, A new algorithm for the decomposition solution of nonlinear differential equations Computers & Mathematics With Applications. ,vol. 54, pp. 459- 466 ,(2007) , 10.1016/J.CAMWA.2006.12.027
S. A. Koehler, H. A. Stone, M. P. Brenner, J. Eggers, Dynamics of foam drainage Physical Review E. ,vol. 58, pp. 2097- 2106 ,(1998) , 10.1103/PHYSREVE.58.2097