Knowledge extraction based on discourse representation theory and linguistic frames

作者: Valentina Presutti , Francesco Draicchio , Aldo Gangemi

DOI: 10.1007/978-3-642-33876-2_12

关键词:

摘要: We have implemented a novel approach for robust ontology design from natural language texts by combining Discourse Representation Theory (DRT), linguistic frame semantics, and …

参考文章(29)
Emilly Budlong, Multimedia Information Extraction ,(2007)
Knowledge Engineering and Management by the Masses Lecture Notes in Computer Science. ,vol. 6317, ,(2010) , 10.1007/978-3-642-16438-5
Bernardo Magnini, Emanuele Pianta, Manuela Speranza, Octavian Popescu, Ontology Population from Textual Mentions: Task Definition and Benchmark meeting of the association for computational linguistics. pp. 26- 32 ,(2006)
Isabelle Augenstein, Sebastian Padó, Sebastian Rudolph, LODifier: Generating Linked Data from Unstructured Text Lecture Notes in Computer Science. pp. 210- 224 ,(2012) , 10.1007/978-3-642-30284-8_21
Eva Blomqvist, Valentina Presutti, Enrico Daga, Aldo Gangemi, Experimenting with eXtreme design knowledge acquisition, modeling and management. pp. 120- 134 ,(2010) , 10.1007/978-3-642-16438-5_9
Bernardo Magnini, Hristo Tanev, Weakly Supervised Approaches for Ontology Population Proceedings of the 2008 conference on Ontology Learning and Population: Bridging the Gap between Text and Knowledge. pp. 129- 143 ,(2008)
René Witte, Ninus Khamis, Juergen Rilling, Flexible Ontology Population from Text: The OwlExporter language resources and evaluation. ,(2010)
Hans Kamp, A Theory of Truth and Semantic Representation Methods in the Study of Language Representation. pp. 329- 369 ,(2008) , 10.1163/9789004252882_014