Age-dependent predation is not a simple process. I. Continuous time models

作者: Alan Hastings

DOI: 10.1016/0040-5809(83)90023-0

关键词:

摘要: The stability of models of age-dependent predation in continuous time with predators exhibiting a functional response are analyzed. A number of new features of biological importance …

参考文章(25)
W.W. Murdoch, A. Oaten, Predation and Population Stability Advances in Ecological Research. ,vol. 9, pp. 1- 131 ,(1975) , 10.1016/S0065-2504(08)60288-3
R.H. Smith, R. Mead, Age structure and stability in models of prey-predator systems Theoretical Population Biology. ,vol. 6, pp. 308- 322 ,(1974) , 10.1016/0040-5809(74)90014-8
N Macdonald, Time delay in prey-predator models Mathematical Biosciences. ,vol. 28, pp. 321- 330 ,(1976) , 10.1016/0025-5564(76)90130-9
Jim M Cushing, Mohamed Saleem, A predator prey model with age structure. Journal of Mathematical Biology. ,vol. 14, pp. 231- 250 ,(1982) , 10.1007/BF01832847
Morton E. Gurtin, Daniel S. Levine, On predator-prey interactions with predation dependent on age of prey Mathematical Biosciences. ,vol. 47, pp. 207- 219 ,(1979) , 10.1016/0025-5564(79)90038-5
Robert M. May, Warren J. Leonard, Nonlinear Aspects of Competition Between Three Species Siam Journal on Applied Mathematics. ,vol. 29, pp. 243- 252 ,(1975) , 10.1137/0129022
D. C. Gazis, E. W. Montroll, J. E. Ryniker, Age-specific, Deterministic Model of Predator-Prey Populations: Application to Isle Royale IBM Journal of Research and Development. ,vol. 17, pp. 47- 53 ,(1973) , 10.1147/RD.171.0047