A Computerized System to Assess Axillary Lymph Node Malignancy from Sonographic Images

作者: Aneta Chmielewski , Paul Dufort , Anabel M. Scaranelo

DOI: 10.1016/J.ULTRASMEDBIO.2015.05.022

关键词:

摘要: A computational approach to classifying axillary lymph node metastasis in sonographic images is described. One hundred five ultrasound of nodes from patients with breast cancer were evaluated (81 benign and 24 malignant), each was manually segmented, delineating both the whole internal hilum surfaces. Normalized signed distance transforms computed segmented boundaries structures, pixel then assigned coordinates a 3-D feature space according pixel's intensity, its boundary boundary. Three-dimensional histograms over accumulated for by summing all pixels, bin counts served as predictor inputs support vector machine learning algorithm. Repeated random sampling 80/25 train/test splits used estimate generalization performance generate receiver operating characteristic curves. The optimal classifier had an area under curve 0.95 sensitivity specificity 0.90 0.90. Our results indicate feasibility nodal staging computerized analysis.

参考文章(27)
Jeremy Kawahara, Chris McIntosh, Roger Tam, Ghassan Hamarneh, Novel Morphological and Appearance Features for Predicting Physical Disability from MR Images in Multiple Sclerosis Patients Lecture Notes in Computational Vision and Biomechanics. pp. 61- 73 ,(2014) , 10.1007/978-3-319-07269-2_6
Karen Drukker, Maryellen Giger, Lina Arbash Meinel, Adam Starkey, Jyothi Janardanan, Hiroyuki Abe, Quantitative ultrasound image analysis of axillary lymph node status in breast cancer patients. computer assisted radiology and surgery. ,vol. 8, pp. 895- 903 ,(2013) , 10.1007/S11548-013-0829-3
Y. Xing, M. Foy, D. D. Cox, H. M. Kuerer, K. K. Hunt, J. N. Cormier, Meta-analysis of sentinel lymph node biopsy after preoperative chemotherapy in patients with breast cancer. British Journal of Surgery. ,vol. 93, pp. 539- 546 ,(2006) , 10.1002/BJS.5209
Richard G. Barr, Zheng Zhang, Jean B. Cormack, Ellen B. Mendelson, Wendie A. Berg, Probably Benign Lesions at Screening Breast US in a Population with Elevated Risk: Prevalence and Rate of Malignancy in the ACRIN 6666 Trial Radiology. ,vol. 269, pp. 701- 712 ,(2013) , 10.1148/RADIOL.13122829
Nehmat Houssami, Stefano Ciatto, Robin M. Turner, Hiram S. Cody, Petra Macaskill, Preoperative ultrasound-guided needle biopsy of axillary nodes in invasive breast cancer: meta-analysis of its accuracy and utility in staging the axilla. Annals of Surgery. ,vol. 254, pp. 243- 251 ,(2011) , 10.1097/SLA.0B013E31821F1564
Bernard Fisher, Madeline Bauer, D. Lawrence Wickerham, Carol K. Redmond, Edwin R. Fisher, Anatolio B. Cruz, Roger Foster, Bernard Gardner, Harvey Lerner, Richard Margolese, Roger Poisson, Henry Shibata, Herbert Volk, , Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update Cancer. ,vol. 52, pp. 1551- 1557 ,(1983) , 10.1002/1097-0142(19831101)52:9<1551::AID-CNCR2820520902>3.0.CO;2-3
Lina Arbash Meinel, Hiroyuki Abe, Martin Bergtholdt, Jacob Ecanow, Robert Schmidt, Gillian Newstead, Multi-modality morphological correlation of axillary lymph nodes. computer assisted radiology and surgery. ,vol. 5, pp. 343- 350 ,(2010) , 10.1007/S11548-010-0421-Z
Yudong Zhang, Lenan Wu, An Mr Brain Images Classifier via Principal Component Analysis and Kernel Support Vector Machine Progress in Electromagnetics Research-pier. ,vol. 130, pp. 369- 388 ,(2012) , 10.2528/PIER12061410
C. Lu, T. Van Gestel, J.A.K. Suykens, S. Van Huffel, I. Vergote, D. Timmerman, Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines Artificial Intelligence in Medicine. ,vol. 28, pp. 281- 306 ,(2003) , 10.1016/S0933-3657(03)00051-4
Richard R. Picard, R. Dennis Cook, Cross-Validation of Regression Models Journal of the American Statistical Association. ,vol. 79, pp. 575- 583 ,(1984) , 10.1080/01621459.1984.10478083