Role of a conserved arginine residue during catalysis in serine palmitoyltransferase.

作者: Jonathan Lowther , Guillaume Charmier , Marine C. Raman , Hiroko Ikushiro , Hideyuki Hayashi

DOI: 10.1016/J.FEBSLET.2011.04.013

关键词:

摘要: All sphingolipid-producing organisms require the pyridoxal 5'-phosphate (PLP)-dependent serine palmitoyltransferase (SPT) to catalyse first reaction on de novo sphingolipid biosynthetic pathway. SPT is a member of alpha oxoamine synthase (AOS) family that catalyses Claisen-like condensation palmitoyl-CoA and L-serine form 3-ketodihydrosphingosine (KDS). Protein sequence alignment across various species reveals an arginine residue, not involved in PLP binding, be strictly conserved all prokaryotic SPTs, lcb2 subunits eukaryotic SPTs members AOS family. Here we use UV-vis spectroscopy site-directed mutagenesis, combination with substrate analogue, show equivalent residue (R370) from Sphingomonas wittichii required key PLP:L-serine quinonoid intermediate condenses thus plays essential role enzyme catalysis.

参考文章(38)
Perdeep K. Mehta, Philipp Christen, The Molecular Evolution of Pyridoxal-5′-Phosphate-Dependent Enzymes Advances in Enzymology - and Related Areas of Molecular Biology. ,vol. 74, pp. 129- 184 ,(2000) , 10.1002/9780470123201.CH4
Robert C. Dickson, Robert L. Lester, M. Marek Nagiec, [1] Serine palmitoyltransferase Methods in Enzymology. ,vol. 311, pp. 3- 9 ,(2000) , 10.1016/S0076-6879(00)11060-2
Joost C. M. Holthuis, Thomas Pomorski, René J. Raggers, Hein Sprong, Gerrit Van Meer, The organizing potential of sphingolipids in intracellular membrane transport Physiological Reviews. ,vol. 81, pp. 1689- 1723 ,(2001) , 10.1152/PHYSREV.2001.81.4.1689
Jonathan Lowther, Beverley A. Yard, Kenneth A. Johnson, Lester G. Carter, Venugopal T. Bhat, Marine C. C. Raman, David J. Clarke, Britta Ramakers, Stephen A. McMahon, James H. Naismith, Dominic J. Campopiano, Inhibition of the PLP-dependent enzyme serine palmitoyltransferase by cycloserine: evidence for a novel decarboxylative mechanism of inactivation Molecular BioSystems. ,vol. 6, pp. 1682- 1693 ,(2010) , 10.1039/C003743E
Marine C. C. Raman, Kenneth A. Johnson, Beverley A. Yard, Jonathan Lowther, Lester G. Carter, James H. Naismith, Dominic J. Campopiano, The External Aldimine Form of Serine Palmitoyltransferase STRUCTURAL, KINETIC, AND SPECTROSCOPIC ANALYSIS OF THE WILD-TYPE ENZYME AND HSAN1 MUTANT MIMICS Journal of Biological Chemistry. ,vol. 284, pp. 17328- 17339 ,(2009) , 10.1074/JBC.M109.008680
Hiroko Ikushiro, Hideyuki Hayashi, Hiroyuki Kagamiyama, A Water-soluble Homodimeric Serine Palmitoyltransferase fromSphingomonas paucimobilis EY2395T Strain PURIFICATION, CHARACTERIZATION, CLONING, AND OVERPRODUCTION Journal of Biological Chemistry. ,vol. 276, pp. 18249- 18256 ,(2001) , 10.1074/JBC.M101550200
Nasrin Jahan, Jane A. Potter, Md. Arif Sheikh, Catherine H. Botting, Sally L. Shirran, Nicholas J. Westwood, Garry L. Taylor, Insights Into the Biosynthesis of the Vibrio Cholerae Major Autoinducer Cai-1 from the Crystal Structure of the Plp-Dependent Enzyme Cqsa. Journal of Molecular Biology. ,vol. 392, pp. 763- 773 ,(2009) , 10.1016/J.JMB.2009.07.042
Emily J. Fogle, Michael D. Toney, Mutational analysis of substrate interactions with the active site of dialkylglycine decarboxylase. Biochemistry. ,vol. 49, pp. 6485- 6493 ,(2010) , 10.1021/BI100648W