Nanostructured Ceramic Coatings Produced by Magnetron Sputtering

作者: Vasco Teixeira

DOI: 10.1007/978-94-010-0157-1_14

关键词:

摘要: Zirconia based coatings, because of optical properties (high refractive index, low absorption over a broad spectral region from near-UV to mid-IR, high pulse laser damage threshold), thermal (low conductivity and expansion coefficient), dielectric constant, mechanical fracture toughness, shock resistance) corrosion-resistant at temperatures, have many important scientific technological applications. Physical Vapor Deposition (PVD) techniques, in particular magnetron sputtering are suitable technologies deposit ceramic coatings with tailored structure (nanocomposite multilayered coatings). Zirconia-Alumina (ZrO2-Al2O3) nanolayered thin new method stabilize the zirconia temperature tetragonal phase room temperature. ZrO2-Al2O3 transformation-toughening nanolaminates were prepared by reactive sputtering. this contribution it is studied structural nanostructured coatings. The paper begins brief overview nanolayer concepts nanoscaled coating architecture, ceramics stability study Coatings pure (undoped) presents monoclinic traces tetragonal. present ZrO2 polycrystalline (monoclinic phases depending on ratio thickness nanolaminated structure) an A12O3 amorphous phase. content increases, as nanolayers get thinner. After annealing air 1000°C alumina preserved state quasiamorphous nanosized grains crystallizes without any transformation.

参考文章(49)
V. Teixeira, M. Andritschky, D. Stöver, Modelling of Thermal Residual Stresses in Ceramic Coatings with a Graded Composite Interlayer Springer Netherlands. pp. 393- 408 ,(1998) , 10.1007/978-94-007-0868-6_26
Howard F. McMurdie, Ernest M. Levin, Carl R. Robbins, Margie K. Reser, Phase diagrams for ceramists Published in <b>1964</b> - <b>1959</b> in Columbus Ohio) by American ceramic society. ,(1964)
Y. W. Zhang, S. Jin, Y. Yang, G. B. Li, S. J. Tian, J. T. Jia, C. S. Liao, C. H. Yan, Electrical conductivity enhancement in nanocrystalline (RE2O3)0.08(ZrO2)0.92 (RE=Sc, Y) thin films Applied Physics Letters. ,vol. 77, pp. 3409- 3411 ,(2000) , 10.1063/1.1328099
M. Gajdardziska‐Josifovska, C. R. Aita, The transformation structure of zirconia‐alumina nanolaminates studied by high resolution electron microscopy Journal of Applied Physics. ,vol. 79, pp. 1315- 1319 ,(1996) , 10.1063/1.361027
D. Stöver, C. Funke, Directions of the development of thermal barrier coatings in energy applications Journal of Materials Processing Technology. ,vol. 92-93, pp. 195- 202 ,(1999) , 10.1016/S0924-0136(99)00244-7
F Vaz, L Rebouta, P Goudeau, J Pacaud, H Garem, J.P Rivière, A Cavaleiro, E Alves, Characterisation of Ti1−xSixNy nanocomposite films Surface & Coatings Technology. pp. 307- 313 ,(2000) , 10.1016/S0257-8972(00)00947-6
Igor Kosacki, Toshio Suzuki, Vladimir Petrovsky, Harlan U Anderson, Electrical conductivity of nanocrystalline ceria and zirconia thin films Solid State Ionics. ,vol. 136-137, pp. 1225- 1233 ,(2000) , 10.1016/S0167-2738(00)00591-9
S. B. Qadri, C. M. Gilmore, C. Quinn, E. F. Skelton, C. R. Gossett, Structural stability of ZrO2–Al2O3 thin films deposited by magnetron sputtering Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. ,vol. 7, pp. 1220- 1224 ,(1989) , 10.1116/1.576258