作者: Jaskaran Singh Grover , Changliu Liu , Katia Sycara , None
DOI:
关键词:
摘要: Collision avoidance for multirobot systems is a well studied problem. Recently, control barrier functions (CBFs) have been proposed for synthesizing controllers that guarantee collision avoidance and goal stabilization for multiple robots. However, it has been noted that reactive control synthesis methods (such as CBFs) are prone to deadlock, an equilibrium of system dynamics that causes robots to come to a standstill before reaching their goals. In this paper, we formally derive characteristics of deadlock in a multirobot system that uses CBFs. We propose a novel approach to analyze deadlocks resulting from optimization based controllers (CBFs) by borrowing tools from duality theory and graph enumeration. Our key insight is that system deadlock is characterized by a force-equilibrium on robots and we show how complexity of deadlock analysis increases approximately exponentially with the number of …