Early Prediction of Museum Visitor Engagement with Multimodal Adversarial Domain Adaptation.

作者: Nathan Henderson , Wookhee Min , Andrew Emerson , Jonathan Rowe , Seung Lee

DOI:

关键词:

摘要: Recent years have seen significant interest in multimodal frameworks for modeling learner engagement in educational settings. Multimodal frameworks hold particular promise for predicting visitor engagement in interactive science museum exhibits. Multimodal models often utilize video data to capture learner behavior, but video cameras are not always feasible, or even desirable, to use in museums. To address this issue while still harnessing the predictive capacities of multimodal models, we investigate adversarial discriminative domain adaptation for generating modality-invariant representations of both unimodal and multimodal data captured from museum visitors as they engage with interactive science museum exhibits. This approach enables the use of pre-trained multimodal visitor engagement models in circumstances where multimodal instrumentation is not available. We evaluate the visitor engagement models in terms of early prediction performance using exhibit interaction and facial

参考文章(0)