Stochastic Gradient Geodesic MCMC Methods

Jun Zhu , Yang Song , Chang Liu
neural information processing systems 29 3009 -3017

18
2016
61
2017
Variational annealing of GANs: A Langevin perspective

Lawrence Carin , Liqun Chen , Chang Liu , Ruiyi Zhang
international conference on machine learning 6176 -6185

17
2019
Message Passing Stein Variational Gradient Descent.

Ning Chen , Jingwei Zhuo , Jun Zhu , Bo Zhang
international conference on machine learning 6013 -6022

60
2018
Straight-Through Estimator as Projected Wasserstein Gradient Flow.

Lawrence Carin , Chunyuan Li , Dinghan Shen , Chang Liu
arXiv: Learning

9
2019
Invertible Image Rescaling

Tie-Yan Liu , Zhouchen Lin , Jiang Bian , Di He
arXiv: Image and Video Processing

114
2020
Variance Reduction and Quasi-Newton for Particle-Based Variational Inference

Jun Zhu , Michael Zhu , Chang Liu
international conference on machine learning 1 11576 -11587

11
2020
Modeling Lost Information in Lossy Image Compression.

Tie-Yan Liu , Chang Liu , Shuxin Zheng , Yaolong Wang
arXiv: Computer Vision and Pattern Recognition

13
2020
Learning to Match Distributions for Domain Adaptation

Renjun Xu , Tie-Yan Liu , Yiqiang Chen , Tao Qin
arXiv: Learning

7
2020
Learning Causal Semantic Representation for Out-of-Distribution Prediction

Chang Liu , Xinwei Sun , Jindong Wang , Haoyue Tang
arXiv: Machine Learning

36
2021
Generalizing to Unseen Domains: A Survey on Domain Generalization.

Jindong Wang , Cuiling Lan , Chang Liu , Yidong Ouyang
arXiv: Learning

278
2021
Rapid Inference of Nitrogen Oxide Emissions Based on a Top-Down Method with a Physically Informed Variational Autoencoder

Jia Xing , Siwei Li , Shuxin Zheng , Chang Liu
Environmental Science \& Technology 56 ( 14) 9903 -9914

2022
Benchmarking graphormer on large-scale molecular modeling datasets

Yu Shi , Shuxin Zheng , Guolin Ke , Yifei Shen
arXiv preprint arXiv:2203.04810

13
2022
Invertible rescaling network and its extensions

Mingqing Xiao , Shuxin Zheng , Chang Liu , Zhouchen Lin
International Journal of Computer Vision 131 ( 1) 134 -159

1
2023
Recovering latent causal factor for generalization to distributional shifts

Xinwei Sun , Botong Wu , Xiangyu Zheng , Chang Liu
Advances in Neural Information Processing Systems 34 16846 -16859

14
2021
Object-aware regularization for addressing causal confusion in imitation learning

Jongjin Park , Younggyo Seo , Chang Liu , Li Zhao
Advances in Neural Information Processing Systems 34 3029 -3042

7
2021
Direct molecular conformation generation

Jinhua Zhu , Yingce Xia , Chang Liu , Lijun Wu
arXiv preprint arXiv:2202.01356

41
2022
Predicting equilibrium distributions for molecular systems with deep learning

Shuxin Zheng , Jiyan He , Chang Liu , Yu Shi
Nature Machine Intelligence 1 -10

35
2024
Overcoming the barrier of orbital-free density functional theory for molecular systems using deep learning

He Zhang , Siyuan Liu , Jiacheng You , Chang Liu
Nature Computational Science 1 -14

2
2024
MatterSim: A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures

Han Yang , Chenxi Hu , Yichi Zhou , Xixian Liu
arXiv preprint arXiv:2405.04967

2024