ZhuSuan: A Library for Bayesian Deep Learning.

Jun Zhu , Jianfei Chen , Shengyang Sun , Jiaxin Shi
arXiv: Machine Learning

43
2017
FUNCTIONAL VARIATIONAL BAYESIAN NEURAL NETWORKS

Roger B. Grosse , Shengyang Sun , Jiaxin Shi , Guodong Zhang
international conference on learning representations

208
2019
Scalable Training of Inference Networks for Gaussian-Process Models

Mohammad Emtiyaz Khan , Jun Zhu , Jiaxin Shi
arXiv: Machine Learning

3
2019
Sliced Score Matching: A Scalable Approach to Density and Score Estimation

Stefano Ermon , Yang Song , Jiaxin Shi , Sahaj Garg
arXiv: Learning

133
2019
Kernel Implicit Variational Inference

Jun Zhu , Shengyang Sun , Jiaxin Shi
international conference on learning representations

54
2018
Message Passing Stein Variational Gradient Descent.

Ning Chen , Jingwei Zhuo , Jun Zhu , Bo Zhang
international conference on machine learning 6013 -6022

60
2018
Semi-crowdsourced Clustering with Deep Generative Models

Jun Zhu , Bo Zhang , Tian Tian , Jiaxin Shi
neural information processing systems 31 3212 -3222

17
2018
Sparse Orthogonal Variational Inference for Gaussian Processes

Michalis K. Titsias , Andriy Mnih , Jiaxin Shi
arXiv: Machine Learning

39
2019
Nonparametric Score Estimators

Jun Zhu , Jiaxin Shi , Yuhao Zhou
arXiv: Machine Learning

1
2020
Neural Networks as Inter-Domain Inducing Points

Roger Baker Grosse , Shengyang Sun , Jiaxin Shi
Third Symposium on Advances in Approximate Bayesian Inference

1
2020
Towards Better Analysis of Deep Convolutional Neural Networks

Mengchen Liu , Jiaxin Shi , Zhen Li , Chongxuan Li
IEEE Transactions on Visualization and Computer Graphics 23 ( 1) 91 -100

472
2017
Gradient estimation with discrete Stein operators

Jiaxin Shi , Yuhao Zhou , Jessica Hwang , Michalis Titsias
Advances in neural information processing systems 35 25829 -25841

4
2022
Neural eigenfunctions are structured representation learners

Zhijie Deng , Jiaxin Shi , Hao Zhang , Peng Cui
arXiv preprint arXiv:2210.12637

3
2022
A Spectral Approach to Gradient Estimation for Implicit Distributions

Jiaxin Shi , Shengyang Sun , Jun Zhu
ICML (arXiv preprint arXiv:1806.02925)

90
2018
NeuralEF: Deconstructing Kernels by Deep Neural Networks

Zhijie Deng , Jiaxin Shi , Jun Zhu
ICML (arXiv preprint arXiv:2205.00165)

15
2022
Double control variates for gradient estimation in discrete latent variable models

Michalis Titsias , Jiaxin Shi
International Conference on Artificial Intelligence and Statistics 6134 -6151

8
2022
Sequence modeling with multiresolution convolutional memory

Jiaxin Shi , Ke Alexander Wang , Emily Fox
International Conference on Machine Learning 31312 -31327

6
2023
Learning Absorption Rates in Glucose-Insulin Dynamics from Meal Covariates

Ke Alexander Wang , Matthew E Levine , Jiaxin Shi , Emily B Fox
arXiv preprint arXiv:2304.14300

2
2023
Scalable variational gaussian processes via harmonic kernel decomposition

Shengyang Sun , Jiaxin Shi , Andrew Gordon Wilson , Roger Grosse
arXiv preprint arXiv:2106.05992

5
2021
Sampling with Mirrored Stein Operators

Jiaxin Shi , Chang Liu , Lester Mackey
International Conference on Learning Representations

20
2022