Rad51–Rad52 Mediated Maintenance of Centromeric Chromatin in Candida albicans

作者: Sreyoshi Mitra , Jonathan Gómez-Raja , Germán Larriba , Dharani Dhar Dubey , Kaustuv Sanyal

DOI: 10.1371/JOURNAL.PGEN.1004344

关键词: GeneticsCentromereDNA replicationKinetochoreChromatinHomologous recombinationOrigin of replicationHistoneChromatin immunoprecipitationBiologyGenetics(clinical)Cancer researchEcology, Evolution, Behavior and SystematicsMolecular biology

摘要: Specification of the centromere location in most eukaryotes is not solely dependent on DNA sequence. However, non-genetic determinants identity are clearly defined. While multiple mechanisms, individually or concert, may specify centromeres epigenetically, studies this area focused a universal factor, centromere-specific histone H3 variant CENP-A, often considered as epigenetic determinant identity. In spite variable timing its loading at across species, replication coupled early S phase deposition CENP-A found yeast centromeres. Centromeres earliest replicating chromosomal regions pathogenic budding Candida albicans. Using 2-dimensional agarose gel electrophoresis assay, we identify origins (ORI7-LI and ORI7-RI) proximal to an (CEN7) C. We show that forks stall CEN7 kinetochore manner fork stalling reduced absence homologous recombination (HR) proteins Rad51 Rad52. Deletion ORI7-RI causes significant reduction stalled signal increased loss rate altered chromosome 7. The HR proteins, Rad52, have been shown play role restart. Confocal microscopy shows declustered kinetochores rad51 rad52 mutants, which evidence disintegrity. CENP-ACaCse4 levels centromeres, determined by chromatin immunoprecipitation (ChIP) experiments, Rad51/Rad52 resulting disruption structure. Moreover, western blot analysis reveals delocalized molecules mutants degrade similar fashion other described before. Finally, co-immunoprecipitation assays indicate Rad52 physically interact with vivo. Thus, epigenetically maintain functioning regulating programmed sites

参考文章(73)
Encarnación Andaluz, Toni Ciudad, Jonathan Gómez-Raja, Richard Calderone, Germán Larriba, Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes. Molecular Microbiology. ,vol. 59, pp. 1452- 1472 ,(2006) , 10.1111/J.1365-2958.2005.05038.X
M B Kurtz, M W Cortelyou, S M Miller, M Lai, D R Kirsch, Development of autonomously replicating plasmids for Candida albicans. Molecular and Cellular Biology. ,vol. 7, pp. 209- 217 ,(1987) , 10.1128/MCB.7.1.209
Ken-ichi Nakamura, Aya Okamoto, Yuki Katou, Chie Yadani, Takeshi Shitanda, Chitrada Kaweeteerawat, Tatsuro S Takahashi, Takehiko Itoh, Katsuhiko Shirahige, Hisao Masukata, Takuro Nakagawa, Rad51 suppresses gross chromosomal rearrangement at centromere in Schizosaccharomyces pombe The EMBO Journal. ,vol. 27, pp. 3036- 3046 ,(2008) , 10.1038/EMBOJ.2008.215
S. Padmanabhan, J. Thakur, R. Siddharthan, K. Sanyal, Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 105, pp. 19797- 19802 ,(2008) , 10.1073/PNAS.0809770105
Wei-Hao Shang, Tetsuya Hori, Nuno M.C. Martins, Atsushi Toyoda, Sadahiko Misu, Norikazu Monma, Ichiro Hiratani, Kazuhiro Maeshima, Kazuho Ikeo, Asao Fujiyama, Hiroshi Kimura, William C. Earnshaw, Tatsuo Fukagawa, Chromosome Engineering Allows the Efficient Isolation of Vertebrate Neocentromeres Developmental Cell. ,vol. 24, pp. 635- 648 ,(2013) , 10.1016/J.DEVCEL.2013.02.009
Kristin C. Scott, Beth A. Sullivan, Neocentromeres: a place for everything and everything in its place. Trends in Genetics. ,vol. 30, pp. 66- 74 ,(2014) , 10.1016/J.TIG.2013.11.003
Daniele Fachinetti, Rodrigo Bermejo, Andrea Cocito, Simone Minardi, Yuki Katou, Yutaka Kanoh, Katsuhiko Shirahige, Anna Azvolinsky, Virginia A. Zakian, Marco Foiani, Replication Termination at Eukaryotic Chromosomes Is Mediated by Top2 and Occurs at Genomic Loci Containing Pausing Elements Molecular Cell. ,vol. 39, pp. 595- 605 ,(2010) , 10.1016/J.MOLCEL.2010.07.024