Dual-frequency acoustic droplet vaporization detection for medical imaging

作者: Christopher B. Arena , Anthony Novell , Paul S. Sheeran , Connor Puett , Linsey C. Moyer

DOI: 10.1109/TUFFC.2014.006883

关键词: Image resolutionVaporizationOpticsSignalTransducerMaterials scienceUltrasoundAcoustic signatureAcoustic droplet vaporizationMicrobubbles

摘要: Liquid-filled perfluorocarbon droplets emit a unique acoustic signature when vaporized into gas-filled microbubbles using ultrasound. Here, we conducted pilot study in tissue-mimicking flow phantom to explore the spatial aspects of droplet vaporization and investigate effects applied pressure concentration on image contrast axial lateral resolution. Control microbubble agents were used for comparison. A confocal dual-frequency transducer was transmit at 8 MHz passively receive 1 MHz. Droplet signals significantly higher energy than signals. This resulted improved signal separation high contrast-to-tissue ratios (CTR). Specifically, with peak negative (PNP) 450 kPa focus, CTR B-mode images 18.3 dB -0.4 microbubbles. The resolution dictated by size activation area, lower pressures resulting smaller areas (0.67 mm kPa). initial independent properties pulse (3.86 In post-processing, time-domain averaging (TDA) (640 700 Taken together, these results indicate that it is possible generate high-sensitivity, high-contrast events. future, this has potential be combination dropletmediated therapy track treatment outcomes or as standalone diagnostic system monitor physical surrounding environment.

参考文章(55)
E L Madsen, F Dong, G R Frank, B S Garra, K A Wear, T Wilson, J A Zagzebski, H L Miller, K K Shung, S H Wang, E J Feleppa, T Liu, W D O'Brien, K A Topp, N T Sanghvi, A V Zaitsev, T J Hall, J B Fowlkes, O D Kripfgans, J G Miller, Interlaboratory comparison of ultrasonic backscatter, attenuation, and speed measurements. Journal of Ultrasound in Medicine. ,vol. 18, pp. 615- 631 ,(1999) , 10.7863/JUM.1999.18.9.615
Oliver D. Kripfgans, J.Brian Fowlkes, Douglas L. Miller, O.Petter Eldevik, Paul L. Carson, Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound in Medicine and Biology. ,vol. 26, pp. 1177- 1189 ,(2000) , 10.1016/S0301-5629(00)00262-3
Yann Desailly, Olivier Couture, Mathias Fink, Mickael Tanter, Sono-activated ultrasound localization microscopy Applied Physics Letters. ,vol. 103, pp. 174107- ,(2013) , 10.1063/1.4826597
M. Minnaert, XVI.On musical air-bubbles and the sounds of running water Philosophical Magazine Series 1. ,vol. 16, pp. 235- 248 ,(1933) , 10.1080/14786443309462277
William T. Shi, Flemming Forsberg, Barry B. Goldberg, Subharmonic imaging with gas‐filled microbubbles Journal of the Acoustical Society of America. ,vol. 101, pp. 3139- 3139 ,(1997) , 10.1121/1.418974
Ayache Bouakaz, Boudewijn J Krenning, Wim B Vletter, Folkert J ten Cate, Nico De Jong, Contrast superharmonic imaging: a feasibility study. Ultrasound in Medicine and Biology. ,vol. 29, pp. 547- 553 ,(2003) , 10.1016/S0301-5629(03)00012-7
Paul S. Sheeran, Samantha H. Luois, Lee B. Mullin, Terry O. Matsunaga, Paul A. Dayton, Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons. Biomaterials. ,vol. 33, pp. 3262- 3269 ,(2012) , 10.1016/J.BIOMATERIALS.2012.01.021
R. L. King, Yunbo Liu, S. Maruvada, B. A. Herman, K. A. Wear, G. R. Harris, Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. ,vol. 58, pp. 1397- 1405 ,(2011) , 10.1109/TUFFC.2011.1959
Oliver D. Kripfgans, Mario L. Fabiilli, Paul L. Carson, J. Brian Fowlkes, On the acoustic vaporization of micrometer-sized droplets The Journal of the Acoustical Society of America. ,vol. 116, pp. 272- 281 ,(2004) , 10.1121/1.1755236