Improved bounds for centered colorings

作者: Piotr Micek , Stefan Felsner , Felix Schröder , Michał Dębski

DOI:

关键词: OmegaMathematicsTreewidthExponential numberCombinatoricsBounded functionUpper and lower boundsVertex (graph theory)Planar graphVertex connectivity

摘要: A vertex coloring $\phi$ of a graph $G$ is $p$-centered if for every connected subgraph $H$ either uses more than $p$ colors on or there color that appears exactly once $H$. Centered colorings form one the families parameters allow to capture notions sparsity graphs: class graphs has bounded expansion and only function $f$ such $p\geq1$, in admits using at most $f(p)$ colors. In this paper, we give upper bounds maximum number needed from several widely studied classes. We show that: (1) planar admit with $\mathcal{O}(p^3\log p)$ where previous bound was $\mathcal{O}(p^{19})$; (2) degree $\mathcal{O}(p)$ while it conjectured they may require exponential $p$; (3) avoiding fixed as topological minor polynomial All these imply algorithms computing colorings. Prior work were no non-trivial lower known. (4) are treewidth $t$ $\binom{p+t}{t}$ any matches bound; (5) $\Omega(p^2\log coloring.

参考文章(19)
Jan Kratochvíl, Michal Vaner, A note on planar partial 3-trees arXiv: Discrete Mathematics. ,(2012)
Jaroslav Nešetřil, Patrice Ossona de Mendez, Grad and classes with bounded expansion I. Decompositions The Journal of Combinatorics. ,vol. 29, pp. 760- 776 ,(2008) , 10.1016/J.EJC.2006.07.013
Jaroslav Nešetřil, Patrice Ossona de Mendez, On nowhere dense graphs The Journal of Combinatorics. ,vol. 32, pp. 600- 617 ,(2011) , 10.1016/J.EJC.2011.01.006
Neil Robertson, P.D Seymour, Graph minors. XVI. excluding a non-planar graph Journal of Combinatorial Theory, Series B. ,vol. 89, pp. 43- 76 ,(2003) , 10.1016/S0095-8956(03)00042-X
Martin Grohe, Dániel Marx, Structure Theorem and Isomorphism Test for Graphs with Excluded Topological Subgraphs SIAM Journal on Computing. ,vol. 44, pp. 114- 159 ,(2015) , 10.1137/120892234
Jaroslav Nešetřil, Patrice Ossona de Mendez, Tree-depth, subgraph coloring and homomorphism bounds The Journal of Combinatorics. ,vol. 27, pp. 1022- 1041 ,(2006) , 10.1016/J.EJC.2005.01.010
Bojan Mohar, A Linear Time Algorithm for Embedding Graphs in an Arbitrary Surface SIAM Journal on Discrete Mathematics. ,vol. 12, pp. 6- 26 ,(1999) , 10.1137/S089548019529248X
Robin A. Moser, Gábor Tardos, A constructive proof of the general lovász local lemma Journal of the ACM. ,vol. 57, pp. 1- 15 ,(2010) , 10.1145/1667053.1667060
Zdeněk Dvořák, Daniel Král, Robin Thomas, Testing first-order properties for subclasses of sparse graphs Journal of the ACM. ,vol. 60, pp. 36- ,(2013) , 10.1145/2499483
Guillaume Fertin, André Raspaud, Bruce Reed, Star coloring of graphs Journal of Graph Theory. ,vol. 47, pp. 163- 182 ,(2004) , 10.1002/JGT.V47:3