Analysis of dynamic cerebral autoregulation using an ARX model based on arterial blood pressure and middle cerebral artery velocity simulation.

作者: Y. Liu , R. Allen

DOI: 10.1007/BF02345461

关键词: Cerebral arteriesGaussian noiseControl theoryCerebral autoregulationMiddle cerebral arteryAutoregulationInternal medicineBlood pressureCardiologyParametric modelStandard deviationMathematics

摘要: The study aimed to model the cerebrovascular system, using a linear ARX based on data simulated by comprehensive physiological model, and assess range of applicability parametric models. Arterial blood pressure (ABP) middle cerebral arterial flow velocity (MCAV) were measured from 11 subjects non-invasively, following step changes in ABP, thigh cuff technique. By optimising parameters associated with autoregulation, non-linear optimisation technique, showed good performance (r=0.83+/-0.14) fitting MCAV. An additional five sets ABP length 236+/-154 s acquired subject at rest. These normalised rescaled coefficients variation (CV=SD/mean) 2% 10% for comparisons. Randomly generated Gaussian noise standard deviation (SD) 1% 5% was added both physiologically MCAV (SMCAV), 'normal' 'impaired' simulate real measurement conditions. SMCAV fitted modelling, autoregulation quantified 5 recovery percentage R5% responses suggests that can be assessed computing response an appropriate order, even when is considerable.

参考文章(12)
R. B. Panerai, J. M. Rennie, A. W. R. Kelsall, D. H. Evans, Frequency-domain analysis of cerebral autoregulation from spontaneous fluctuations in arterial blood pressure Medical & Biological Engineering & Computing. ,vol. 36, pp. 315- 322 ,(1998) , 10.1007/BF02522477
D. M. Simpson, R. B. Panerai, D. H. Evans, J. Garnham, A. R. Naylor, P. R. F. Bell, Estimating normal and pathological dynamic responses in cerebral blood flow velocity to step changes in end-tidal pCO2. web science. ,vol. 38, pp. 535- 539 ,(2000) , 10.1007/BF02345749
H. Tanaka, O. Thulesius, Effect of temperature on finger artery pressure evaluated by volume clamp technique. Clinical Physiology. ,vol. 13, pp. 535- 545 ,(1993) , 10.1111/J.1475-097X.1993.TB00469.X
Peter Smielewski, Marek Czosnyka, Peter Kirkpatrick, Helen McEroy, Helen Rutkowska, John D. Pickard, Assessment of Cerebral Autoregulation Using Carotid Artery Compression Stroke. ,vol. 27, pp. 2197- 2203 ,(1996) , 10.1161/01.STR.27.12.2197
A. A. Birch, M. J. Dirnhuber, R. Hartley-Davies, F. Iannotti, G. Neil-Dwyer, Assessment of Autoregulation by Means of Periodic Changes in Blood Pressure Stroke. ,vol. 26, pp. 834- 837 ,(1995) , 10.1161/01.STR.26.5.834
S K Kirkham, R E Craine, A A Birch, A new mathematical model of dynamic cerebral autoregulation based on a flow dependent feedback mechanism. Physiological Measurement. ,vol. 22, pp. 461- 473 ,(2001) , 10.1088/0967-3334/22/3/305
M. Ursino, M. Iezzi, N. Stocchetti, Intracranial pressure dynamics in patients with acute brain damage: a critical analysis with the aid of a mathematical model IEEE Transactions on Biomedical Engineering. ,vol. 42, pp. 529- 540 ,(1995) , 10.1109/10.387192
Frank P Tiecks, Arthur M Lam, Rune Aaslid, David W Newell, None, Comparison of Static and Dynamic Cerebral Autoregulation Measurements Stroke. ,vol. 26, pp. 1014- 1019 ,(1995) , 10.1161/01.STR.26.6.1014
Rong Zhang, Julie H. Zuckerman, Cole A. Giller, Benjamin D. Levine, Transfer function analysis of dynamic cerebral autoregulation in humans. American Journal of Physiology-heart and Circulatory Physiology. ,vol. 274, ,(1998) , 10.1152/AJPHEART.1998.274.1.H233
R.B. Panerai, D.M. Simpson, S.T. Deverson, P. Mahony, P. Hayes, D.H. Evans, Multivariate dynamic analysis of cerebral blood flow regulation in humans IEEE Transactions on Biomedical Engineering. ,vol. 47, pp. 419- 423 ,(2000) , 10.1109/10.827312