Luteotrophic and luteolytic effects of nitric oxide in sheep are dose-dependent in vivo

作者: Christopher S. Keator , David T. Schreiber , Thomas A. Hoagland , John A. McCracken

DOI: 10.1016/J.DOMANIEND.2008.02.001

关键词: EndocrinologyLuteolytic EffectsDose–response relationshipVenous PlasmaIn vivoInternal medicineCorpus luteumNitric oxideDipropylenetriamine-NONOateLuteal phaseChemistry

摘要: It has been suggested that nitric oxide (NO) acts in either an anti-luteolytic or a luteolytic manner, but the mechanism for these opposing roles is unclear. We hypothesized NO may act dose-dependent manner to regulate luteal function, whereby low concentrations of might stimulate progesterone production (i.e. luteotrophic) and high reduce plasma luteolytic). To test this hypothesis we infused increasing fast-acting donor, dipropylenetriamine NONOate (DPTA), into arterial supply sheep with ovarian transplants bearing corpus luteum (CL). Infusions were performed on CL 11 days age (n=9) over 30 (n=15). measured changes concentration venous during 1-h infusion 24h after infusion, then compared mean between treatment groups effects by dose period interactions. Compared saline-treated controls (n=6), highest 1000 microg/min DPTA (n=6) reduced (P 0.05) lowest 1 controls. conclude regulates function vivo.

参考文章(49)
J.A. MCCRACKEN, D.T. BAIRD, J.R. GODING, Factors affecting the secretion of steroids from the transplanted ovary in the sheep. Recent Progress in Hormone Research. ,vol. 27, pp. 537- 582 ,(1971) , 10.1016/B978-0-12-571127-2.50038-9
S Moncada, E A Higgs, The discovery of nitric oxide and its role in vascular biology British Journal of Pharmacology. ,vol. 147, ,(2006) , 10.1038/SJ.BJP.0706458
Kimberly A. Vonnahme, Matthew E. Wilson, Yun Li, Heidi L. Rupnow, Terrance M. Phernetton, Stephen P. Ford, Ronald R. Magness, Circulating levels of nitric oxide and vascular endothelial growth factor throughout ovine pregnancy The Journal of Physiology. ,vol. 565, pp. 101- 109 ,(2005) , 10.1113/JPHYSIOL.2004.082321
Gordon L. Rintoul, Vicki J. Bennett, Natalia A. Papaconstandinou, Ian J. Reynolds, Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential. Journal of Neurochemistry. ,vol. 97, pp. 800- 806 ,(2006) , 10.1111/J.1471-4159.2006.03788.X
H LI, T POULOS, Structure?function studies on nitric oxide synthases Journal of Inorganic Biochemistry. ,vol. 99, pp. 293- 305 ,(2005) , 10.1016/J.JINORGBIO.2004.10.016
Y.S. Weems, E. Lennon, T. Uchima, A. Raney, K. Goto, A. Ong, H. Zaleski, C.W. Weems, Mechanism whereby nitric oxide (NO) infused chronically intrauterine in ewes is antiluteolytic rather than being luteolytic. Prostaglandins & Other Lipid Mediators. ,vol. 85, pp. 33- 41 ,(2008) , 10.1016/J.PROSTAGLANDINS.2007.10.003
William Schubert, Philippe G. Frank, Scott E. Woodman, Hideyuki Hyogo, David E. Cohen, Chi-Wing Chow, Michael P. Lisanti, Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. Journal of Biological Chemistry. ,vol. 277, pp. 40091- 40098 ,(2002) , 10.1074/JBC.M205948200
Anne Jeffers, Xiuli Xu, Kris T. Huang, Man Cho, Neil Hogg, Rakesh P. Patel, Daniel B. Kim-Shapiro, Hemoglobin mediated nitrite activation of soluble guanylyl cyclase. Comparative Biochemistry and Physiology A-molecular & Integrative Physiology. ,vol. 142, pp. 130- 135 ,(2005) , 10.1016/J.CBPB.2005.04.016
Theresa A. Towle, Paul C.W. Tsang, Robert A. Milvae, Michelle K. Newbury, John A. McCracken, Dynamic In Vivo Changes in Tissue Inhibitors of Metalloproteinases 1 and 2, and Matrix Metalloproteinases 2 and 9, During Prostaglandin F2α-Induced Luteolysis in Sheep Biology of Reproduction. ,vol. 66, pp. 1515- 1521 ,(2002) , 10.1095/BIOLREPROD66.5.1515