Electronic properties of new homobimetallic anthracene-bridged η5-cyclopentadienyl derivatives of iridium(I) and of the corresponding cation radicals [L2Ir(C5H4CH2(9,10-anthrylene)CH2C5H4)IrL2]+

作者: Federica Bertini , Lucia Calucci , Francesca Cicogna , Benedetta Gaddi , Giovanni Ingrosso

DOI: 10.1016/J.JORGANCHEM.2006.03.017

关键词: Intramolecular forceAnalytical chemistryQuenching (fluorescence)Electron transferRadicalElectron paramagnetic resonanceCrystallographyChemistryProton NMRIridiumCyclopentadienyl complex

摘要: Abstract The bimetallic complexes [L 2 Ir{C 5 H 4 CH (9,10-anthrylene)CH C }IrL ] ( 3 ) (L = η -C and (L = CO) were obtained by reacting the thallium(I) derivative of 9,10-bis(cyclopentadienylmethyl)-anthracene 1 ), i.e. [Tl{C }Tl] with [IrCl(η [IrCl(C N)(CO) ], respectively, characterized elemental analysis, MS, NMR, UV–Vis (290–490 nm) spectroscopy, FT-IR. When excited at wavelengths ranging from 333 to 383 nm, results be fluorescent, while show almost complete quenching anthrylene fluorescence. electrochemical behaviour has been studied compared that monometallic complexes, (η -9-anthrylmethylcyclopentadienyl)-bis(η -ethylene)iridium(I) whose preparation X-ray structure are reported here, already described -9-anthrylmethylcyclopentadienyl)dicarbonyliridium(I) 6 ). study allows interpretation electrode processes gives information about location redox sites along thermodynamic characterization processes. On this basis, intramolecular charge-transfer process between photo-excited anthrylenic moiety one cyclopentadienylIrL unit is suggested a possible route for oxidation [bis(trifluoroacetoxy)iodo]benzene (PIFA) thallium(III) trifluoroacetate (TTFA), produces radical cations + , which, on base their EPR spectra, as average-valence [Ir +1.5 Ir species. DFT calculations spin density distribution confirm allow further insight into such radicals. Differences analogies lying electronic conformational bimetallic, monometallic, cation radicals discussed comparing spectra maps.

参考文章(45)
Richard A. Bissell, A. Prasanna de Silva, H. Q. Nimal Gunaratne, P. L. Mark Lynch, Glenn E. M. Maguire, Colin P. McCoy, K. R. A. Samankumara Sandanayake, Fluorescent PET (photoinduced electron transfer) sensors Topics in Current Chemistry. ,vol. 168, pp. 223- 264 ,(1993) , 10.1007/3-540-56746-1_12
Raymond Ziessel, Muriel Hissler, Abdelkrim El-ghayoury, Anthony Harriman, Multifunctional transition metal complexes: Information transfer at the molecular level Coordination Chemistry Reviews. ,vol. 178, pp. 1251- 1298 ,(1998) , 10.1016/S0010-8545(98)00060-5
John A. Pople, David L. Beveridge, Approximate molecular orbital theory ,(1970)
Nicolas DiCesare, Joseph R. Lakowicz, Evaluation of two synthetic glucose probes for fluorescence-lifetime-based sensing. Analytical Biochemistry. ,vol. 294, pp. 154- 160 ,(2001) , 10.1006/ABIO.2001.5170
Yoon Soo Han, Sang Dae Kim, Lee Soon Park, Dong Uk Kim, Younghwan Kwon, Synthesis of conjugated copolymers containing phenothiazinylene vinylene moieties and their electrooptic properties Journal of Polymer Science Part A. ,vol. 41, pp. 2502- 2511 ,(2003) , 10.1002/POLA.10793
Feng-Bo Xu, Qing-Shan Li, Xian-Shun Zeng, Xue-Bing Leng, Zheng-Zhi Zhang, Bimetallocyclophanes formed by the π-π stacking interaction approach and fluorescent chemosensing behavior Organometallics. ,vol. 23, pp. 632- 634 ,(2004) , 10.1021/OM0340037
Maria Careri, Alessandro Mangia, Paola Manini, Giovanni Predieri, Enrico Sappa, Applications of HPLC-MS to carbonyl clusters of the iron triad. The behaviour of dinuclear “flyover-bridged” iron compounds Journal of Organometallic Chemistry. ,vol. 476, pp. 127- 132 ,(1994) , 10.1016/0022-328X(94)87074-8
Allen J Bard, Larry R Faulkner, Henry S White, Electrochemical Methods: Fundamentals and Applications ,(1980)
Cristina G. de Azevedo, K. Peter C. Vollhardt, Oligocyclopentadienyl transition metal complexes Synlett. ,vol. 2002, pp. 1019- 1042 ,(2002) , 10.1055/S-2002-32572