Multiplatform single-sample estimates of transcriptional activation

作者: S. R. Piccolo , M. R. Withers , O. E. Francis , A. H. Bild , W. E. Johnson

DOI: 10.1073/PNAS.1305823110

关键词: DNA microarrayWorkflowData miningSingle sampleBiologyGene expression profilingSoftwareData integrationMixture modelProfiling (information science)

摘要: Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers experienced difficulty in integrating data across platforms. Data integration crucial data-generating consortiums, transitioning newer profiling technologies, individuals seeking aggregate experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects platform-specific background noise using models that account genomic base composition length of target regions; approach also uses a mixture model estimate whether active particular sample. The latter standardized UPC values on zero-to-one scale, so they can be interpreted consistently, irrespective technology, thus enabling downstream analysis pipelines platform-agnostic manner. method applied one- two-channel microarrays next-generation sequencing (RNA sequencing). Furthermore, UPCs are derived information from within given sample only—no ancillary samples required at processing time. Thus, suitable personalized-medicine workflows where must processed individually rather than batches. In variety analyses comparisons, perform comparably other methods designed specifically or RNA most settings. Software calculating freely available www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html.

参考文章(39)
P. C. Mahalanobis, On the generalized distance in statistics Proceedings of the National Institute of Sciences (Calcutta). ,vol. 2, pp. 49- 55 ,(1936)
Igor Kononenko, Estimating attributes: analysis and extensions of RELIEF european conference on machine learning. pp. 171- 182 ,(1994) , 10.1007/3-540-57868-4_57
Giovanni Parmigiani, Elizabeth S. Garrett, Ramaswamy Anbazhagan, Edward Gabrielson, A statistical framework for expression-based molecular classification in cancer Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 64, pp. 717- 736 ,(2002) , 10.1111/1467-9868.00358
Stephen R. Piccolo, Ying Sun, Joshua D. Campbell, Marc E. Lenburg, Andrea H. Bild, W. Evan Johnson, A single-sample microarray normalization method to facilitate personalized-medicine workflows Genomics. ,vol. 100, pp. 337- 344 ,(2012) , 10.1016/J.YGENO.2012.08.003
Leming Shi, Laura H Reid, Wendell D Jones, Richard Shippy, Janet A Warrington, Shawn C Baker, Patrick J Collins, Francoise De Longueville, Ernest S Kawasaki, Kathleen Y Lee, Yuling Luo, Yongming Andrew Sun, James C Willey, Robert A Setterquist, Gavin M Fischer, Weida Tong, Yvonne P Dragan, David J Dix, Felix W Frueh, Federico M Goodsaid, Damir Herman, Roderick V Jensen, Charles D Johnson, Edward K Lobenhofer, Raj K Puri, Uwe Schrf, Jean Thierry-Mieg, Charles Wang, Mike Wilson, Paul K Wolber, Lu Zhang, Shashi Amur, Wenjun Bao, Catalin C Barbacioru, Anne Bergstrom Lucas, Vincent Bertholet, Cecilie Boysen, Bud Bromley, Donna Brown, Alan Brunner, Roger Canales, Xiaoxi Megan Cao, Thomas A Cebula, James J Chen, Jing Cheng, Tzu-Ming Chu, Eugene Chudin, John Corson, J Christopher Corton, Lisa J Croner, Christopher Davies, Timothy S Davison, Glenda Delenstarr, Xutao Deng, David Dorris, Aron C Eklund, Xiao-Hui Fan, Hong Fang, Stephanie Fulmer-Smentek, James C Fuscoe, Kathryn Gallagher, Weigong Ge, Lei Guo, Xu Guo, Janet Hager, Paul K Haje, Jing Han, Tao Han, Heather C Harbottle, Stephen C Harris, Eli Hatchwell, Craig A Hauser, Susan Hester, Huixiao Hong, Patrick Hurban, Scott A Jackson, Hanlee Ji, Charles R Knight, Winston P Kuo, J Eugene LeClerc, Shawn Levy, Quan-Zhen Li, Chunmei Liu, Ying Liu, Michael J Lombardi, Yunqing Ma, Scott R Magnuson, Botoul Maqsodi, Tim McDaniel, Nan Mei, Ola Myklebost, Baitang Ning, Natalia Novoradovskaya, Michael S Orr, Terry W Osborn, Adam Papallo, Tucker A Patterson, Roger G Perkins, Elizabeth H Peters, Ron Peterson, Kenneth L Philips, P Scott Pine, Lajos Pusztai, Feng Qian, Hongzu Ren, Mitch Rosen, Barry A Rosenzweig, Raymond R Samaha, Mark Schena, Gary P Schroth, Svetlana Shchegrova, Dave D Smith, Frank Staedtler, Zhenqiang Su, Hongmei Sun, Zoltan Szallasi, Zivana Tezak, Danielle Thierry-Mieg, Karol L Thompson, Irina Tikhonova, Yaron Turpaz, Beena Vallanat, Christophe Van, Stephen J Walker, Sue Jane Wang, Yonghong Wang, Russ Wolfinger, Alex Wong, Jie Wu, Chunlin Xiao, Qian Xie, Jun Xu, Wen Yang, S Zhong, Y Zong, W Slikker Jr, None, The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements Nature Biotechnology. ,vol. 24, pp. 1151- 1161 ,(2006) , 10.1038/NBT1239
Michael J Zilliox, Rafael A Irizarry, A gene expression bar code for microarray data. Nature Methods. ,vol. 4, pp. 911- 913 ,(2007) , 10.1038/NMETH1102
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
Keyur H Desai, Chuen Seng Tan, Jeffrey T Leek, Ronald V Maier, Ronald G Tompkins, John D Storey, Inflammation and the Host Response to Injury Large-Scale Collaborative Research Program, None, Dissecting inflammatory complications in critically injured patients by within-patient gene expression changes: a longitudinal clinical genomics study. PLOS Medicine. ,vol. 8, ,(2011) , 10.1371/JOURNAL.PMED.1001093
Ultan McDermott, James R. Downing, Michael R. Stratton, Genomics and the continuum of cancer care. The New England Journal of Medicine. ,vol. 364, pp. 340- 350 ,(2011) , 10.1056/NEJMRA0907178
Matthew N. McCall, Karan Uppal, Harris A. Jaffee, Michael J. Zilliox, Rafael A. Irizarry, The Gene Expression Barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes Nucleic Acids Research. ,vol. 39, pp. 1011- 1015 ,(2011) , 10.1093/NAR/GKQ1259