Structures of the Human Poly (ADP-Ribose) Glycohydrolase Catalytic Domain Confirm Catalytic Mechanism and Explain Inhibition by ADP-HPD Derivatives

作者: Julie A. Tucker , Neil Bennett , Claire Brassington , Stephen T. Durant , Giles Hassall

DOI: 10.1371/JOURNAL.PONE.0050889

关键词: RiboseSmall moleculeIsothermal titration calorimetryProtein structureEnzymePoly(ADP-ribose) glycohydrolaseStructure–activity relationshipBiochemistryPARGChemistryGeneral Biochemistry, Genetics and Molecular BiologyGeneral Agricultural and Biological SciencesGeneral Medicine

摘要: Poly(ADP-ribose) glycohydrolase (PARG) is the only enzyme known to catalyse hydrolysis of O-glycosidic linkages ADP-ribose polymers, thereby reversing effects poly(ADP-ribose) polymerases. PARG deficiency leads cell death whilst depletion causes sensitisation certain DNA damaging agents, implicating as a potential therapeutic target in several disease areas. Efforts develop small molecule inhibitors activity have until recently been hampered by lack structural information on PARG. We used combination bio-informatic and experimental approaches engineer crystallisable, catalytically active fragment human (hPARG). Here, we present high-resolution structures catalytic domain hPARG unliganded form complex with three inhibitors: (ADPR), adenosine 5′-diphosphate (hydroxymethyl)pyrrolidinediol (ADP-HPD) 8-n-octyl-amino-ADP-HPD. Our confirm conservation overall fold amongst mammalian domains, revealing additional flexible regions site. These new rationalise body published mutational data reported structure-activity relationship for ADP-HPD based inhibitors. In addition, developed biochemical, isothermal titration calorimetry surface plasmon resonance assays characterise binding our protein, thus providing starting point design

参考文章(73)
Martyn D. Winn, Garib N. Murshudov, Miroslav Z. Papiz, Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods in Enzymology. ,vol. 374, pp. 300- 321 ,(2003) , 10.1016/S0076-6879(03)74014-2
Kam Y.J. Zhang, Kevin Cowtan, Peter Main, Combining constraints for electron-density modification. Methods in Enzymology. ,vol. 277, pp. 53- 64 ,(1997) , 10.1016/S0076-6879(97)77006-X
Masanao Miwa, Miyoko Tanaka, Taijiro Matsushima, Takashi Sugimura, Purification and Properties of a Glycohydrolase from Calf Thymus Splitting Ribose-Ribose Linkages of Poly(Adenosine Diphosphate Ribose) Journal of Biological Chemistry. ,vol. 249, pp. 3475- 3482 ,(1974) , 10.1016/S0021-9258(19)42597-0
Amanda C. Nottbohm, Paul J. Hergenrother, The Promises and Pitfalls of Small-Molecule Inhibition of Poly(ADP-Ribose) Glycohydrolase (PARG) Drug Discovery Research. pp. 163- 185 ,(2006) , 10.1002/9780470131862.CH7
Masanao Miwa, Takashi Sugimura, [46] Structure of poly(ADP-ribose) Methods in Enzymology. ,vol. 106, pp. 441- 450 ,(1984) , 10.1016/0076-6879(84)06048-1
Keith W. Caldecott, Single-strand break repair and genetic disease Nature Reviews Genetics. ,vol. 9, pp. 619- 631 ,(2008) , 10.1038/NRG2380
Jamin D. Steffen, Donna L. Coyle, Komath Damodaran, Paul Beroza, Myron K. Jacobson, Discovery and structure-activity relationships of modified salicylanilides as cell permeable inhibitors of poly(ADP-ribose) glycohydrolase (PARG). Journal of Medicinal Chemistry. ,vol. 54, pp. 5403- 5413 ,(2011) , 10.1021/JM200325S
Gerrit Langer, Serge X Cohen, Victor S Lamzin, Anastassis Perrakis, Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nature Protocols. ,vol. 3, pp. 1171- 1179 ,(2008) , 10.1038/NPROT.2008.91
Chandra N. PATEL, David W. KOH, Myron K. JACOBSON, Marcos A. OLIVEIRA, Identification of three critical acidic residues of poly(ADP-ribose) glycohydrolase involved in catalysis: determining the PARG catalytic domain Biochemical Journal. ,vol. 388, pp. 493- 500 ,(2005) , 10.1042/BJ20040942