Effect of Mars Atmospheric Loss on Snow Melt Potential in a 3.5 Gyr Mars Climate Evolution Model

作者: Michael A. Mischna , Edwin S. Kite , Megan Mansfield

DOI: 10.1002/2017JE005422

关键词: Atmospheric sciencesSurface waterGeologySnowmeltMars Exploration ProgramAtmosphereHesperianMartianAtmospheric pressureAtmosphere of Mars

摘要: Post-Noachian Martian paleochannels indicate the existence of liquid water on surface Mars after about 3.5 Gya [Irwin et al., 2015; Palucis 2016]. In order to explore effects variations in CO2 partial pressure and obliquity possibility water, we created a zero-dimensional energy balance model. We combine this model with physically consistent orbital histories track conditions over last 3.5 Gyr history. find that melting is allowed for atmospheric pressures corresponding exponential loss rates dP/dt∝t−3.73 or faster, but rate within 0.5σ calculated from initial measurements made by Atmosphere Volatile EvolutioN (MAVEN) mission, if assume all escaping oxygen measured MAVEN comes CO2[Lillis 2017; Tu 2015]. Melting at matches selected key geologic constraints formation Hesperian river networks, assuming optimal melt during warmest part each year Stopar 2006; Kite 2017a,b].. The has larger effect than changes Mars's mean obliquity. These results show atmosphere are being dominant process switched melt-permitting melt-absent climate [Jakosky 2017], non-CO2 warming will be required <2 Gya confirmed, most H2O.

参考文章(71)
Robert J. Lillis, Stuart Robbins, Michael Manga, Jasper S. Halekas, Herbert V. Frey, Time history of the Martian dynamo from crater magnetic field analysis Journal of Geophysical Research. ,vol. 118, pp. 1488- 1511 ,(2013) , 10.1002/JGRE.20105
Michael A. Mischna, Victor Baker, Ralph Milliken, Mark Richardson, Christopher Lee, Effects of obliquity and water vapor/trace gas greenhouses in the early martian climate Journal of Geophysical Research: Planets. ,vol. 118, pp. 560- 576 ,(2013) , 10.1002/JGRE.20054
John Longhi, Phase equilibrium in the system CO2-H2O: Application to Mars Journal of Geophysical Research. ,vol. 111, ,(2006) , 10.1029/2005JE002552
R. J. Lillis, D. A. Brain, S. W. Bougher, F. Leblanc, J. G. Luhmann, B. M. Jakosky, R. Modolo, J. Fox, J. Deighan, X. Fang, Y. C. Wang, Y. Lee, C. Dong, Y. Ma, T. Cravens, L. Andersson, S. M. Curry, N. Schneider, M. Combi, I. Stewart, J. Clarke, J. Grebowsky, D. L. Mitchell, R. Yelle, A. F. Nagy, D. Baker, R. P. Lin, Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN Space Science Reviews. ,vol. 195, pp. 357- 422 ,(2015) , 10.1007/S11214-015-0165-8
Robin Ramstad, Stas Barabash, Yoshifumi Futaana, Hans Nilsson, Xiao-Dong Wang, Mats Holmström, The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations Journal of Geophysical Research. ,vol. 120, pp. 1298- 1309 ,(2015) , 10.1002/2015JE004816
Antoine Lucas, Edwin S. Kite, Edwin S. Kite, Oded Aharonson, Oded Aharonson, Jean-Pierre Williams, Low palaeopressure of the martian atmosphere estimated from the size distribution of ancient craters Nature Geoscience. ,vol. 7, pp. 335- 339 ,(2014) , 10.1038/NGEO2137
Owen B. Toon, James B. Pollack, William Ward, Joseph A. Burns, Kenneth Bilski, The astronomical theory of climatic change on Mars Icarus. ,vol. 44, pp. 552- 607 ,(1980) , 10.1016/0019-1035(80)90130-X
Rebecca M.E. Williams, Michael C. Malin, Sub-kilometer fans in Mojave Crater, Mars Icarus. ,vol. 198, pp. 365- 383 ,(2008) , 10.1016/J.ICARUS.2008.07.013
R. Wordsworth, F. Forget, E. Millour, J.W. Head, J.-B. Madeleine, B. Charnay, Global modelling of the early Martian climate under a denser CO2 atmosphere: Water cycle and ice evolution Icarus. ,vol. 222, pp. 1- 19 ,(2013) , 10.1016/J.ICARUS.2012.09.036
Edwin S. Kite, Alan D. Howard, Antoine S. Lucas, John C. Armstrong, Oded Aharonson, Michael P. Lamb, Stratigraphy of Aeolis Dorsa, Mars: Stratigraphic context of the great river deposits Icarus. ,vol. 253, pp. 223- 242 ,(2015) , 10.1016/J.ICARUS.2015.03.007