Combinatorial Optimization and High Dimensional Billiards

作者: Pál Ruján

DOI: 10.1007/978-3-662-04804-7_3

关键词: Travelling salesman problemConvex hullSimple (abstract algebra)Combinatorial optimizationApplied mathematicsQuadratic programmingBayesian probabilityMaxima and minimaComputer scienceBayesian inference

摘要: Combinatorial optimization deals with algorithms for finding extrema of functions subject to a (possibly large) number constraints. Bayesian inference also requires averages over such extrema. In this chapter we show how simple dynamic systems like billiards can be used find solutions problems. The topics covered are linear and quadratic programming, classification, mixture

参考文章(17)
David Shmoys, Eugene L. Lawler, Alexander H. G. Rinnooy Kan, Jan Karel Lenstra, The traveling salesman problem ,(1985)
B. WIDROW, M. E. HOFF, Adaptive switching circuits Neurocomputing: foundations of research. pp. 123- 134 ,(1988) , 10.21236/AD0241531
J. Moser, Geometry of Quadrics and Spectral Theory Springer, New York, NY. pp. 147- 188 ,(1980) , 10.1007/978-1-4613-8109-9_7
T. L. H Watkin, Optimal Learning with a Neural Network EPL. ,vol. 21, pp. 871- 876 ,(1993) , 10.1209/0295-5075/21/8/013
Sigurd Diederich, Manfred Opper, Learning of correlated patterns in spin-glass networks by local learning rules. Physical Review Letters. ,vol. 58, pp. 949- 952 ,(1987) , 10.1103/PHYSREVLETT.58.949
Manfred Opper, David Haussler, Generalization performance of Bayes optimal classification algorithm for learning a perceptron. Physical Review Letters. ,vol. 66, pp. 2677- 2680 ,(1991) , 10.1103/PHYSREVLETT.66.2677
L. A. Bunimovich, On the ergodic properties of nowhere dispersing billiards Communications in Mathematical Physics. ,vol. 65, pp. 295- 312 ,(1979) , 10.1007/BF01197884
J. K Anlauf, M Biehl, The AdaTron: An Adaptive Perceptron Algorithm EPL. ,vol. 10, pp. 687- 692 ,(1989) , 10.1209/0295-5075/10/7/014