On the ergodic properties of nowhere dispersing billiards

作者: L. A. Bunimovich

DOI: 10.1007/BF01197884

关键词: Nonlinear systemArtificial neural networkQuantum computerDynamical billiardsComplex systemErgodic theoryProperty (philosophy)Classical mechanicsMathematics

摘要: For billiards in two dimensional domains with boundaries containing only focusing and neutral regular components satisfacting some geometrical conditionsB-property is proved. Some examples of three more obeying this property are also considered.

参考文章(12)
A. N. Zemlyakov, A. B. Katok, Topological transitivity of billiards in polygons Mathematical Notes. ,vol. 18, pp. 760- 764 ,(1975) , 10.1007/BF01818045
Carlo Boldrighini, Michael Keane, Federico Marchetti, Billiards in Polygons Annals of Probability. ,vol. 6, pp. 532- 540 ,(1978) , 10.1214/AOP/1176995475
Donald S Ornstein, An example of a Kolmogorov automorphism that is not a Bernoulli shift Advances in Mathematics. ,vol. 10, pp. 49- 62 ,(1973) , 10.1016/0001-8708(73)90097-2
Eberhard Hopf, Statistik der L�sungen geod�tischer Probleme vom unstabilen Typus. II Mathematische Annalen. ,vol. 117-117, pp. 590- 608 ,(1940) , 10.1007/BF01450032
M I Brin, Ja B Pesin, PARTIALLY HYPERBOLIC DYNAMICAL SYSTEMS Mathematics of The Ussr-izvestiya. ,vol. 8, pp. 177- 218 ,(1974) , 10.1070/IM1974V008N01ABEH002101
L A Bunimovič, Ja G Sinaĭ, ON A FUNDAMENTAL THEOREM IN THE THEORY OF DISPERSING BILLIARDS Mathematics of The Ussr-sbornik. ,vol. 19, pp. 407- 423 ,(1973) , 10.1070/SM1973V019N03ABEH001786
L A Bunimovič, ON BILLIARDS CLOSE TO DISPERSING Mathematics of The Ussr-sbornik. ,vol. 23, pp. 45- 67 ,(1974) , 10.1070/SM1974V023N01ABEH001713
Vladimir I Arnol'd, SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS Russian Mathematical Surveys. ,vol. 18, pp. 85- 191 ,(1963) , 10.1070/RM1963V018N06ABEH001143
Giovanni Gallavotti, Donald S. Ornstein, Billiards and Bernoulli schemes Communications in Mathematical Physics. ,vol. 38, pp. 83- 101 ,(1974) , 10.1007/BF01651505