作者: C. V. Chianca , M. K. Olsen
DOI: 10.1103/PHYSREVA.84.043636
关键词: Entropy (arrow of time) 、 Quantum 、 Statistical physics 、 Density matrix 、 Physics 、 Population 、 Stochastic process 、 Quantum statistical mechanics 、 Phase space 、 Quantum mechanics 、 Thermalisation
摘要: We examine the medium time quantum dynamics and population equilibration of two-, three-, four-well Bose-Hubbard models using stochastic integration in truncated Wigner phase-space representation. find that all three systems will enter at least a temporary state equilibrium, with details depending on both classical initial conditions statistics. integrability is not necessarily good guide as to whether occur. construct an effective single-particle reduced density matrix for each systems, expectation values operator moments, use this calculate entropy. Knowing expected maximum entropy system, we are able quantify different approaches equilibrium.