Internal friction in (Fe80Ga20)99.95(NbC)0.05 alloy at elevated temperatures

作者: Meiling Fang , Jie Zhu , Igor S. Golovin , Jiheng Li , Chao Yuan

DOI: 10.1016/J.INTERMET.2012.05.015

关键词: CrystallographyMaterials scienceTorsion pendulum clockActivation energyAnalytical chemistryAtmospheric temperature rangeSolid solutionQuenchingRelaxation (NMR)Annealing (metallurgy)Grain boundary

摘要: Abstract The temperature and frequency dependent internal friction of a rolled (Fe 80 Ga 20 ) 99.95 (NbC) 0.05 alloy has been investigated using computer-controlled automatic inverted torsion pendulum instruments. measurements were carried out in forced vibration mode from room up to 973 K with varying between 0.5 Hz 11 Hz. Results obtained by standard methods XRD, SEM DSC show that the main phases specimen structure is disorder A2 phase (random solid solution) NbC phase. Two peaks are observed range 973 K. low-temperature peak at about 423 K occurs only high quenching may be complex effect consisting Snoek-type relaxation vacancies/ordering effect. A pronounced thermally activated (P1) 750 K all samples activation energy 2.21–2.84 eV time 1.71 × 10 −20 –8.79 × 10 −17  s classified as Zener peak. damping background above P1 caused interaction precipitates solution particles temperature. (P2) 873 K water quenched below 1173 K. P2 disappears if 1373 K. height strongly on annealing decreases quickly increasing According energy, most probably originating grain boundary relaxation. In particular, boundaries lead

参考文章(21)
Fusheng Han, Zhengang Zhu, Changsong Liu, Junchang Gao, Damping behavior of foamed aluminum Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 30, pp. 771- 776 ,(1999) , 10.1007/S11661-999-1008-6
I.S. Golovin, Anelastic relaxation in ternary Fe–Al–Me alloys: MeCo, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 442, pp. 92- 98 ,(2006) , 10.1016/J.MSEA.2006.03.118
J.R Cullen, A.E Clark, M Wun-Fogle, J.B Restorff, T.A Lograsso, Magnetoelasticity of Fe–Ga and Fe–Al alloys Journal of Magnetism and Magnetic Materials. ,vol. 226, pp. 948- 949 ,(2001) , 10.1016/S0304-8853(00)00612-0
M. Atodiresei, G. Gremaud, R. Schaller, Study of solute atom-dislocation interactions in Al–Mg alloys by mechanical spectroscopy Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 442, pp. 160- 164 ,(2006) , 10.1016/J.MSEA.2006.04.127
I.S. Golovin, H. Neuhäuser, A. Rivière, A. Strahl, Anelasticity of Fe–Al alloys, revisited Intermetallics. ,vol. 12, pp. 125- 150 ,(2004) , 10.1016/J.INTERMET.2003.10.003
A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, V. M. Keppens, G. Petculescu, R. A. Taylor, Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys Journal of Applied Physics. ,vol. 93, pp. 8621- 8623 ,(2003) , 10.1063/1.1540130
I.S. Golovin, A. Rivière, Mechanical spectroscopy of the Zener relaxation in Fe–22Al and Fe–26Al alloys Intermetallics. ,vol. 14, pp. 570- 577 ,(2006) , 10.1016/J.INTERMET.2005.09.010
Q. F. Fang, X. P. Wang, G. G. Zhang, Z. J. Cheng, Evolution of internal friction and dielectric relaxation peaks in La2Mo2O9-based oxide-ion conductors assessed by a nonlinear peak-fitting method Physica Status Solidi (a). ,vol. 202, pp. 1041- 1047 ,(2005) , 10.1002/PSSA.200420023
I.S. Golovin, S. Jäger, Chr. Mennerich, C. Siemers, H. Neuhäuser, Structure and anelasticity of Fe3Ge alloy Intermetallics. ,vol. 15, pp. 1548- 1557 ,(2007) , 10.1016/J.INTERMET.2007.06.004
N. Srisukhumbowornchai, S. Guruswamy, Large magnetostriction in directionally solidified FeGa and FeGaAl alloys Journal of Applied Physics. ,vol. 90, pp. 5680- 5688 ,(2001) , 10.1063/1.1412840