Online Prediction of Physico-Chemical Quality Attributes of Beef Using Visible—Near-Infrared Spectroscopy and Chemometrics

作者: Amna Sahar , Paul Allen , Torres Sweeney , Jamie Cafferky , Gerard Downey

DOI: 10.3390/FOODS8110525

关键词: Near-infrared spectroscopyMathematicsMusculus longissimus thoracisVisible near infraredChemical qualitySpectroscopyCalibrationAnalytical chemistryChemometricsCoefficient of determination

摘要: The potential of visible–near-infrared (Vis–NIR) spectroscopy to predict physico-chemical quality traits in 368 samples bovine musculus longissimus thoracis et lumborum (LTL) was evaluated. A fibre-optic probe applied on the exposed surface carcass for collection spectra, including neck and rump (1 h 2 post-mortem after quartering, i.e., 24 25 post-mortem) boned-out LTL muscle (48 49 post-mortem). In parallel, reference analysis parameters beef ultimate pH, colour (L, a*, b*), cook loss drip conducted using standard laboratory methods. Partial least-squares (PLS) regression models were used correlate spectral information with muscle. Different mathematical pre-treatments their combinations improve model accuracy, which evaluated basis coefficient determination calibration (R2C) cross-validation (R2CV) root-mean-square error (RMSEC) (RMSECV). Reliable achieved pH (R2CV: 0.91 (quartering, h) R2CV: 0.96 (LTL muscle, 48 h)) 0.82 0.99 lower RMSECV values. results show Vis–NIR online prediction certain over different time periods.

参考文章(36)
K. O. Honikel, R. Hamm, Measurement of water-holding capacity and juiciness Springer, Boston, MA. pp. 125- 161 ,(1994) , 10.1007/978-1-4615-2167-9_5
J K Page, D M Wulf, T R Schwotzer, A survey of beef muscle color and pH. Journal of Animal Science. ,vol. 79, pp. 678- 687 ,(2001) , 10.2527/2001.793678X
Zhenjie Xiong, Da-Wen Sun, Hongbin Pu, Wenhong Gao, Qiong Dai, Applications of emerging imaging techniques for meat quality and safety detection and evaluation: A review. Critical Reviews in Food Science and Nutrition. ,vol. 57, pp. 755- 768 ,(2017) , 10.1080/10408398.2014.954282
D. Cozzolino, I. Murray, R. Paterson, J.R. Scaife, Visible and near infrared reflectance spectroscopy for the determination of moisture, fat and protein in chicken breast and thigh muscle Journal of Near Infrared Spectroscopy. ,vol. 4, pp. 213- 223 ,(1996) , 10.1255/JNIRS.92
G. Ripoll, P. Albertí, B. Panea, J.L. Olleta, C. Sañudo, Near-infrared reflectance spectroscopy for predicting chemical, instrumental and sensory quality of beef Meat Science. ,vol. 80, pp. 697- 702 ,(2008) , 10.1016/J.MEATSCI.2008.03.009
M. De Marchi, M. Penasa, M. Battagin, E. Zanetti, C. Pulici, M. Cassandro, Feasibility of the direct application of near-infrared reflectance spectroscopy on intact chicken breasts to predict meat color and physical traits Poultry Science. ,vol. 90, pp. 1594- 1599 ,(2011) , 10.3382/PS.2010-01239
S. Andrés, A. Silva, A.L. Soares-Pereira, C. Martins, A.M. Bruno-Soares, I. Murray, The use of visible and near infrared reflectance spectroscopy to predict beef M. longissimus thoracis et lumborum quality attributes. Meat Science. ,vol. 78, pp. 217- 224 ,(2008) , 10.1016/J.MEATSCI.2007.06.019
D.J. Troy, J.P. Kerry, Consumer perception and the role of science in the meat industry. Meat Science. ,vol. 86, pp. 214- 226 ,(2010) , 10.1016/J.MEATSCI.2010.05.009
N. Prieto, D.W. Ross, E.A. Navajas, G.R. Nute, R.I. Richardson, J.J. Hyslop, G. Simm, R. Roehe, On-line application of visible and near infrared reflectance spectroscopy to predict chemical-physical and sensory characteristics of beef quality. Meat Science. ,vol. 83, pp. 96- 103 ,(2009) , 10.1016/J.MEATSCI.2009.04.005