Human body odor discrimination by GC-MS spectra data mining

作者: Sunil Kr. Jha , Ninoslav Marina , Chuanjun Liu , Kenshi Hayashi

DOI: 10.1039/C5AY02457A

关键词: Sampling (statistics)Odor discriminationAge groupsPrincipal component analysisOdorChemistryData miningVisual discriminationGas chromatography–mass spectrometryFeature vector

摘要: The present study explores individual identity perception by analyzing the chemical peak information in gas chromatography-mass spectrometry (GC-MS) spectra of body odor samples with standard data mining approaches. Mainly, principal component analysis (PCA) method is chosen for visual discrimination feature space. PCA combination support vector machine (SVM) used quantitative recognition. GC-MS characterization confirms composition numerous species (aldehydes, acids, ketones, esters, sulfides etc.) samples. from armpit and neck three people (from dissimilar age groups) at two different sampling times (0 h 4 h) were recorded experiment. A few blank (non-body odor) also characterized included as references further methods. efficiency (both qualitative quantitative) odors was evaluated (i) variables (the area, height ratio area to height); (ii) h); (iii) parts armpit). best has been achieved using a variable time h. This result established class separability measures calculated (PC) scores SVM classification outcomes (86%).

参考文章(28)
Vladimir Naumovich Vapnik, Estimation of Dependences Based on Empirical Data ,(2010)
Sudhir Kumar Pandey, Ki-Hyun Kim, Human body-odor components and their determination Trends in Analytical Chemistry. ,vol. 30, pp. 784- 796 ,(2011) , 10.1016/J.TRAC.2010.12.005
James J. Leyden, Kenneth J. McGinley, Erhard Hölzle, John N. Labows, Albert M. Kligman, The Microbiology of the Human Axilla and Its Relationship to Axillary Odor Journal of Investigative Dermatology. ,vol. 77, pp. 413- 416 ,(1981) , 10.1111/1523-1747.EP12494624
Sadahiko Yamazaki, Kunihide Hoshino, Masatoshi Kusuhara, Odor Associated with Aging Anti-aging Medicine. ,vol. 7, pp. 60- 65 ,(2010) , 10.3793/JAAM.7.60
George Preti, James J. Leyden, Genetic Influences on Human Body Odor: From Genes to the Axillae Journal of Investigative Dermatology. ,vol. 130, pp. 344- 346 ,(2010) , 10.1038/JID.2009.396
Zhuo-Min Zhang, Ji-Jin Cai, Gui-Hua Ruan, Gong-Ke Li, The study of fingerprint characteristics of the emanations from human arm skin using the original sampling system by SPME-GC/MS. Journal of Chromatography B. ,vol. 822, pp. 244- 252 ,(2005) , 10.1016/J.JCHROMB.2005.06.026
E. A. Grice, H. H. Kong, S. Conlan, C. B. Deming, J. Davis, A. C. Young, G. G. Bouffard, R. W. Blakesley, P. R. Murray, E. D. Green, M. L. Turner, J. A. Segre, , Topographical and temporal diversity of the human skin microbiome. Science. ,vol. 324, pp. 1190- 1192 ,(2009) , 10.1126/SCIENCE.1171700
Allison M. Curran, Scott I. Rabin, Paola A. Prada, Kenneth G. Furton, Comparison of the volatile organic compounds present in human odor using SPME-GC/MS. Journal of Chemical Ecology. ,vol. 31, pp. 1607- 1619 ,(2005) , 10.1007/S10886-005-5801-4
F. KANDA, E. YAGI, M. FUKUDA, K. NAKAJIMA, T. OHTA, O. NAKATA, Elucidation of chemical compounds responsible for foot malodour British Journal of Dermatology. ,vol. 122, pp. 771- 776 ,(1990) , 10.1111/J.1365-2133.1990.TB06265.X
Sunil Kr Jha, Masahiro Imahashi, Kenshi Hayashi, Tadashi Takamizawa, Data fusion approach for human body odor discrimination using GC-MS spectra international conference on intelligent sensors sensor networks and information processing. pp. 1- 6 ,(2014) , 10.1109/ISSNIP.2014.6827592