Differential inhibition in vivo of ammonia monooxygenase, soluble methane monooxygenase and membrane‐associated methane monooxygenase by phenylacetylene

作者: Sonny Lontoh , Alan A. DiSpirito , Cinder L. Krema , Mark R. Whittaker , Alan B. Hooper

DOI: 10.1046/J.1462-2920.2000.00130.X

关键词: BiologyMethylomonasMethylococcaceaeNitrosomonasMethylococcus capsulatusNitrosomonas europaeaPhenylacetyleneStereochemistryMethane monooxygenaseBiochemistryAmmonia monooxygenase

摘要: Phenylacetylene was investigated as a differential inhibitor of ammonia monooxygenase (AMO), soluble methane (sMMO) and membrane-associated or particulate (pMMO) in vivo. At phenylacetylene concentrations > 1 microM, whole-cell AMO activity Nitrosomonas europaea completely inhibited. above 100 microM inhibited more than 90% sMMO Methylococcus capsulatus Bath Methylosinus trichosporium OB3b. In contrast, pMMO M. OB3b, Bath, Methylomicrobium album BG8, Methylobacter marinus A45 Methylomonas strain MN still measurable at up to 1,000 microM. Nitrosococcus oceanus has sequence similarity N. europaea. Correspondingly, also the presence phenylacetylene. Measurement oxygen uptake indicated that acted specific mechanistic-based activity; inactivation irreversible, time dependent, first order required catalytic turnover. Corresponding measurement whole cells methanotrophs expressing showed by phenylacetylene, but only if already being oxidized, then much higher lower rates compared with sMMO. As high solubility low volatility, it may prove be useful for monitoring methanotrophic nitrifying well identifying form MMO predominantly expressed situ.

参考文章(51)
M R Hyman, P M Wood, Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene Biochemical Journal. ,vol. 227, pp. 719- 725 ,(1985) , 10.1042/BJ2270719
D. J. Arp, N. G. Hommes, M. R. Hyman, L. Y. Juliette, W. K. Keener, S. A. Russell, L. A. Sayavedra-Soto, Ammonia Monooxygenase from Nitrosomonas europaea Springer, Dordrecht. pp. 159- 166 ,(1996) , 10.1007/978-94-009-0213-8_22
Todd Vannelli, David Bergmann, David M. Arciero, Alan B. Hooper, Mechanism of N-Oxidation and Electron Transfer in the Ammonia Oxidizing Autotrophs Springer, Dordrecht. pp. 80- 87 ,(1996) , 10.1007/978-94-009-0213-8_12
M R Hyman, P M Wood, Methane oxidation by Nitrosomonas europaea Biochemical Journal. ,vol. 212, pp. 31- 37 ,(1983) , 10.1042/BJ2120031
D. L. N. Cardy, V. Laidler, G. P. C. Salmond, J. C. Murrell, The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of the mmoC gene. Archives of Microbiology. ,vol. 156, pp. 477- 483 ,(1991) , 10.1007/BF00245395
Alan B. Hooper, Todd Vannelli, David J. Bergmann, David M. Arciero, Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology. ,vol. 71, pp. 59- 67 ,(1997) , 10.1023/A:1000133919203
William M. Meylan, Julie Funk, Philip H. Howard, Handbook of Physical Properties of Organic Chemicals ,(1997)
Sung-Cheol Koh, John P. Bowman, Gary S. Sayler, Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1. Applied and Environmental Microbiology. ,vol. 59, pp. 960- 967 ,(1993) , 10.1128/AEM.59.4.960-967.1993
T.C. Hollocher, M.E. Tate, D.J. Nicholas, Oxidation of ammonia by Nitrosomonas europaea. Definite 18O-tracer evidence that hydroxylamine formation involves a monooxygenase. Journal of Biological Chemistry. ,vol. 256, pp. 10834- 10836 ,(1981) , 10.1016/S0021-9258(19)68518-2