Perturbed Lie Symmetry and Systems of Non-Linear Diffusion Equations

作者: I.T. Habibullin

DOI: 10.2991/JNMP.1996.3.1-2.14

关键词: Symmetry (physics)Constant (mathematics)Operator (physics)Lie groupMatrix (mathematics)Diffusion equationDiffusion (business)MathematicsBoundary value problemMathematical analysis

摘要: Abstract The method of one parameter, point symmetric, approximate Lie group invariants is applied to the problem determining solutions systems pure one-dimensional, diffusion equations. equations are taken be non-linear in dependent variables but otherwise homogeneous. Moreover, matrix coefficients differ from a constant by linear perturbation with respect an infinitesimal parameter. conditions for invariance developed and coupled system. corresponding prolongation operator derived it shown that this places power law logarithmic constraints on nature perturbed matrix. used derive solution equation impulsive boundary conditions.

参考文章(4)
What Is Integrability Springer Berlin Heidelberg. ,(1991) , 10.1007/978-3-642-88703-1
Burak Gürel, Metin Gürses, Ismagil Habibullin, Boundary value problems compatible with symmetries Physics Letters A. ,vol. 190, pp. 231- 237 ,(1994) , 10.1016/0375-9601(94)90747-1
I.T Habibullin, Symmetries of boundary problems Physics Letters A. ,vol. 178, pp. 369- 375 ,(1993) , 10.1016/0375-9601(93)90863-U
P. N. Bibikov, V. O. Tarasov, Boundary-value problem for nonlinear Schrödinger equation Theoretical and Mathematical Physics. ,vol. 79, pp. 570- 579 ,(1989) , 10.1007/BF01016541