Newton‐like iteration methods for solving non‐linear equations

作者: Changbum Chun , YoonMee Ham

DOI: 10.1002/CNM.832

关键词: Newton's methodPreconditionerCalculusModified Richardson iterationArnoldi iterationRayleigh quotient iterationFixed-point iterationApplied mathematicsMathematicsSymbolic computationPower iteration

摘要: In this paper, Newton-like iteration methods for solving non-linear equations or improving the existing are proposed. The formulae obtained by applying homotopy perturbation method which contains well-known Newton formula in logic, so those method. orders of convergence some derived analytically and symbolic computation Maple. Some numerical illustrations given. Copyright © 2005 John Wiley & Sons, Ltd.

参考文章(18)
C. Hillermeier, Generalized homotopy approach to multiobjective optimization Journal of Optimization Theory and Applications. ,vol. 110, pp. 557- 583 ,(2001) , 10.1023/A:1017536311488
H.H.H. Homeier, On Newton-type methods with cubic convergence Journal of Computational and Applied Mathematics. ,vol. 176, pp. 425- 432 ,(2005) , 10.1016/J.CAM.2004.07.027
Jihuan He, An approximate solution technique depending on an artificial parameter: A special example Communications in Nonlinear Science and Numerical Simulation. ,vol. 3, pp. 92- 97 ,(1998) , 10.1016/S1007-5704(98)90070-3
Jihuan He, Newton-like iteration method for solving algebraic equations Communications in Nonlinear Science and Numerical Simulation. ,vol. 3, pp. 106- 109 ,(1998) , 10.1016/S1007-5704(98)90073-9
Shi-Jun Liao, An approximate solution technique not depending on small parameters: A special example International Journal of Non-linear Mechanics. ,vol. 30, pp. 371- 380 ,(1995) , 10.1016/0020-7462(94)00054-E
Ji-Huan He, The homotopy perturbation method for nonlinear oscillators with discontinuities Applied Mathematics and Computation. ,vol. 151, pp. 287- 292 ,(2004) , 10.1016/S0096-3003(03)00341-2
Ljiljana Petković, Slobodan Tričković, On the construction of simultaneous methods for multiple zeros Nonlinear Analysis-theory Methods & Applications. ,vol. 30, pp. 669- 676 ,(1997) , 10.1016/S0362-546X(97)00408-2