Application of distributed temperature sensing for mountain permafrost mapping

作者: Jordan S. Harrington , Masaki Hayashi

DOI: 10.1002/PPP.1997

关键词: Geothermal gradientSnowImage resolutionSediment grain sizeRock glacierSnowpackGeologyGeomorphologyPermafrostTemperature sensing

摘要: Permafrost distribution in mountains is typically more heterogeneous relative to low‐relief environments due greater variability the factors controlling ground thermal regime, such as topography, snow depth, and sediment grain size (e.g., coarse blocks). Measuring understanding geothermal high remains challenging logistical constraints. This study presents one of first applications distributed temperature sensing (DTS) periglacial measure surface temperatures a mountain permafrost area at much higher spatial resolution than possible with conventional methods using discrete sensors. DTS measures along fibre‐optic cable (i.e., ≤ 1 m). Its use can be limited by power supply calibration requirements, although recent methodological developments have relaxed some these restrictions. Spatially continuous measurements studied rock glacier provided facilitated interpretation bottom snowpack data map patchy distribution. research highlights potential for useful tool mapping, regime interpretation, conceptual model development, numerical evaluation areas permafrost.

参考文章(40)
Francisco Suarez, Mark B., Jeff Dozier, John S., Scott W., Heat Transfer in the Environment: Development and Use of Fiber-Optic Distributed Temperature Sensing InTech. ,(2011) , 10.5772/19474
Christian Huggel, John J. Clague, Oliver Korup, Is climate change responsible for changing landslide activity in high mountains Earth Surface Processes and Landforms. ,vol. 37, pp. 77- 91 ,(2012) , 10.1002/ESP.2223
Daniel Vonder Mühll, Christian Hauck, Hansueli Gubler, Mapping of mountain permafrost using geophysical methods Progress in Physical Geography. ,vol. 26, pp. 643- 660 ,(2002) , 10.1191/0309133302PP356RA
Samuel I. Outcalt, Frederick E. Nelson, Kenneth M. Hinkel, The zero‐curtain effect: Heat and mass transfer across an isothermal region in freezing soil Water Resources Research. ,vol. 26, pp. 1509- 1516 ,(1990) , 10.1029/WR026I007P01509
Stuart A. Harris, David E. Pedersen, Thermal regimes beneath coarse blocky materials Permafrost and Periglacial Processes. ,vol. 9, pp. 107- 120 ,(1998) , 10.1002/(SICI)1099-1530(199804/06)9:2<107::AID-PPP277>3.0.CO;2-G
Gregory Langston, Laurence R. Bentley, Masaki Hayashi, Alastair McClymont, Adam Pidlisecky, Internal structure and hydrological functions of an alpine proglacial moraine Hydrological Processes. ,vol. 25, pp. 2967- 2982 ,(2011) , 10.1002/HYP.8144
Ketil Isaksen, Christian Hauck, Espen Gudevang, Rune S. Ødegård, Johan Ludvig Sollid, Mountain permafrost distribution in Dovrefjell and Jotunheimen, southern Norway, based on BTS and DC resistivity tomography data Norsk Geografisk Tidsskrift-norwegian Journal of Geography. ,vol. 56, pp. 122- 136 ,(2002) , 10.1080/002919502760056459
Charles Harris, Lukas U. Arenson, Hanne H. Christiansen, Bernd Etzelmüller, Regula Frauenfelder, Stephan Gruber, Wilfried Haeberli, Christian Hauck, Martin Hölzle, Ole Humlum, Ketil Isaksen, Andreas Kääb, Martina A. Kern-Lütschg, Michael Lehning, Norikazu Matsuoka, Julian B. Murton, Jeanette Nötzli, Marcia Phillips, Neil Ross, Matti Seppälä, Sarah M. Springman, Daniel Vonder Mühll, Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses Earth-Science Reviews. ,vol. 92, pp. 117- 171 ,(2009) , 10.1016/J.EARSCIREV.2008.12.002