Magnetic exchange force microscopy with atomic resolution

作者: Uwe Kaiser , Alexander Schwarz , Roland Wiesendanger

DOI: 10.1038/NATURE05617

关键词: Magnetic force microscopeMagnetic resonance force microscopyElectrostatic force microscopeNon-contact atomic force microscopyKelvin probe force microscopeConductive atomic force microscopyMagnetic domainCondensed matter physicsMagnetismChemistry

摘要: The ordering of neighbouring atomic magnetic moments (spins) leads to important collective phenomena such as ferromagnetism and antiferromagnetism. A full understanding magnetism on the nanometre scale therefore calls for information arrangement spins in real space with resolution. Spin-polarized scanning tunnelling microscopy accomplishes this but can probe only conducting materials. Force be used any sample independent its conductivity. In particular, force is well suited exploring ferromagnetic domain structures. However, resolution cannot achieved because data acquisition involves sensing long-range magnetostatic forces between tip sample. Magnetic exchange has been proposed overcoming limitation: by using an microscope a tip, it should possible detect short-range spins. Here we show prototypical antiferromagnetic insulator, (001) surface nickel oxide, that indeed reveal both atoms their simultaneously. contrast previous attempts implement method, use external field align polarization at apex so optimize interaction This allows us observe direct coupling atom are closest each other, thereby demonstrate potential investigations inter-spin interactions level.

参考文章(21)
A. Kubetzka, P. Ferriani, M. Bode, S. Heinze, G. Bihlmayer, K. von Bergmann, O. Pietzsch, S. Blügel, R. Wiesendanger, Revealing antiferromagnetic order of the Fe monolayer on W(001): spin-polarized scanning tunneling microscopy and first-principles calculations. Physical Review Letters. ,vol. 94, pp. 087204- ,(2005) , 10.1103/PHYSREVLETT.94.087204
R. Hoffmann, M. A. Lantz, H. J. Hug, P. J. A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.-J. Güntherodt, Atomic resolution imaging and frequency versus distance measurements on NiO(001) using low-temperature scanning force microscopy Physical Review B. ,vol. 67, pp. 085402- ,(2003) , 10.1103/PHYSREVB.67.085402
M. Liebmann, A. Schwarz, S. M. Langkat, R. Wiesendanger, A low-temperature ultrahigh vacuum scanning force microscope with a split-coil magnet Review of Scientific Instruments. ,vol. 73, pp. 3508- 3514 ,(2002) , 10.1063/1.1502446
M. R. Castell, P. L. Wincott, N. G. Condon, C. Muggelberg, G. Thornton, S. L. Dudarev, A. P. Sutton, G. A. D. Briggs, Atomic-resolution STM of a system with strongly correlated electrons:NiO(001) surface structure and defect sites Physical Review B. ,vol. 55, pp. 7859- 7863 ,(1997) , 10.1103/PHYSREVB.55.7859
M. R. Castell, S. L. Dudarev, G. A. D. Briggs, A. P. Sutton, Unexpected differences in the surface electronic structure of NiO and CoO observed by STM and explained by first-principles theory Physical Review B. ,vol. 59, pp. 7342- 7345 ,(1999) , 10.1103/PHYSREVB.59.7342
T. R. Albrecht, P. Grütter, D. Horne, D. Rugar, Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity Journal of Applied Physics. ,vol. 69, pp. 668- 673 ,(1991) , 10.1063/1.347347
S Heinze, M Bode, A Kubetzka, O Pietzsch, X Nie, S Blugel, R Wiesendanger, Real-Space Imaging of Two-Dimensional Antiferromagnetism on the Atomic Scale Science. ,vol. 288, pp. 1805- 1808 ,(2000) , 10.1126/SCIENCE.288.5472.1805