作者: N. Hendrich
DOI: 10.1109/IJCNN.2000.861530
关键词: Recurrent neural network 、 Wake-sleep algorithm 、 Types of artificial neural networks 、 Computer science 、 Online machine learning 、 Instance-based learning 、 Unsupervised learning 、 Generalization error 、 Learning classifier system 、 Active learning (machine learning) 、 Stability (learning theory) 、 Competitive learning 、 Catastrophic interference 、 Iterative learning control 、 Content-addressable memory 、 Deep learning 、 Leabra 、 Learning rule 、 Theoretical computer science 、 Adaptive learning 、 Artificial neural network 、 Artificial intelligence
摘要: This paper presents a new adaptive iterative learning rule for binary couplings networks. Unlike previous approaches, the algorithm adapts to pattern correlations during and succeeds store highly correlated patterns. Also, by supplying set of default stabilities rule, recall properties network can be adjusted each pattern. Simulations results in simple recursive demonstrate storage associative memory trained show advantage over older rules. Note that adaption step also applied other algorithms. Applications multi-layer networks hardware implementation are discussed.