Low dimensional modulational chaos in diffractive nonlinear cavities

作者: M. Haelterman , S. Trillo , S. Wabnitz

DOI: 10.1016/0030-4018(92)90198-Z

关键词: OpticsNonlinear opticsDynamical systemClassical mechanicsPhysicsNonlinear systemModulational instabilityOptical fieldNonlinear Schrödinger equationField (physics)Chaotic

摘要: Abstract The time development of transverse modulational instabilities in nonlinear passive optical cavities may generate both stable and chaotic spatial patterns. description these phenomena be done by means an averaged forced damped Schrodinger equation. We show that a truncated four-dimensional dynamical system capture the behavior field. present simple geometrical temporally spatially coherent transmitted

参考文章(22)
M. J. Ablowitz, J. F. Ladik, A Nonlinear Difference Scheme and Inverse Scattering Studies in Applied Mathematics. ,vol. 55, pp. 213- 229 ,(1976) , 10.1002/SAPM1976553213
J. F. Nicoll, T. S. Chang, H. E. Stanley, Nonlinear Crossover between Critical and Tricritical Behavior Physical Review Letters. ,vol. 36, pp. 113- 116 ,(1976) , 10.1103/PHYSREVLETT.36.113
Eryk Infeld, George Rowlands, Nonlinear Waves, Solitons and Chaos nwsc. pp. 406- ,(2000) , 10.1017/CBO9781139171281
D. W. McLaughlin, J. V. Moloney, A. C. Newell, New class of instabilities in passive optical cavities. Physical Review Letters. ,vol. 54, pp. 681- 684 ,(1985) , 10.1103/PHYSREVLETT.54.681
S. M. J. Kelly, K. Smith, K. J. Blow, N. J. Doran, Average soliton dynamics of a high-gain erbium fiber laser. Optics Letters. ,vol. 16, pp. 1337- 1339 ,(1991) , 10.1364/OL.16.001337
M. Haelterman, G. Vitrant, R. Reinisch, Transverse effects in nonlinear planar resonators. I. Modal theory Journal of The Optical Society of America B-optical Physics. ,vol. 7, pp. 1309- 1318 ,(1990) , 10.1364/JOSAB.7.001309
A.R. Bishop, M.G. Forest, D.W. McLaughlin, E.A. Overman, A modal representation of chaotic attractors for the driven, damped pendulum chain Physics Letters A. ,vol. 144, pp. 17- 25 ,(1990) , 10.1016/0375-9601(90)90041-L
D. W. Mc Laughlin, J. V. Moloney, A. C. Newell, Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity Physical Review Letters. ,vol. 51, pp. 75- 78 ,(1983) , 10.1103/PHYSREVLETT.51.75