Extant ionic charge theory for bond orbital model based on the tight-binding method: A semi-empirical model applied to wide-bandgap II-VI and III-V semiconductors

作者: A.S. Verma

DOI: 10.1016/J.MSSP.2014.05.033

关键词: Tight bindingCondensed matter physicsMaterials scienceShear modulusIonic bondingThermodynamicsEffective nuclear chargeBulk modulusChemical polarityCovalent bondChemical bond

摘要: Abstract In order to enhance the viability of this review for that issue, I suggest adding beginning Abstract: "Binary semiconductors with II-VI and III-V composition, owing their direct typically rather wide gap, are technologically important materials. The recent successful fabrication blue-green laser diode based on these compounds has renewed interest in physical properties correlations presented bond polarity (αp), hybrid covalent energy (V2) elastic constants (Cij) may be represented by linear equations. These simple function product ionic charges cation anion (Z1Z2) nearest neighbour distance (d A). On basis result a orbital calculations tight-binding method is used estimate covalency (αc), polar (V3), effective charge, transverse charge (eT), Kleinman׳s internal displacement parameter (ζ), bulk modulus (B), shear constant (C11−C12)/2, (G), Young׳s (Y), stretching force (α), bending (β) number ordered ANB8−N semiconductors. proposed expressions can applied broad selection materials predictions good agreement experimental data those from ab initio calculations.

参考文章(36)
H. Neumann, Force constant scaling and interatomic potential in tetrahedral semiconductors Crystal Research and Technology. ,vol. 24, pp. 325- 329 ,(1989) , 10.1002/CRAT.2170240318
R Khenata, A Bouhemadou, M Sahnoun, Ali H Reshak, H Baltache, M Rabah, None, Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure Computational Materials Science. ,vol. 38, pp. 29- 38 ,(2006) , 10.1016/J.COMMATSCI.2006.01.013
S Q Wang, H Q Ye, A plane-wave pseudopotential study on III–V zinc-blende and wurtzite semiconductors under pressure Journal of Physics: Condensed Matter. ,vol. 14, pp. 9579- 9587 ,(2002) , 10.1088/0953-8984/14/41/313
V. Kumar, Interatomic force constants of semiconductors Journal of Physics and Chemistry of Solids. ,vol. 61, pp. 91- 94 ,(2000) , 10.1016/S0022-3697(99)00238-3
Liang Chen, Sami Kamran, Kuiying Chen, Semiempirical formulae for elastic moduli and brittleness of diamondlike and zinc-blende covalent crystals Physical Review B. ,vol. 77, pp. 094109- ,(2008) , 10.1103/PHYSREVB.77.094109
A.S. Verma, Elastic moduli of orthorhombic perovskites Solid State Communications. ,vol. 158, pp. 34- 37 ,(2013) , 10.1016/J.SSC.2013.01.005
Shinji Muramatsu, Michihide Kitamura, Simple expressions for elastic constants c11, c12, and c44 and internal displacements of semiconductors Journal of Applied Physics. ,vol. 73, pp. 4270- 4272 ,(1993) , 10.1063/1.352807
B. N. Harmon, W. Weber, D. R. Hamann, Total-energy calculations for Si with a first-principles linear-combination-of-atomic-orbitals method Physical Review B. ,vol. 25, pp. 1109- 1115 ,(1982) , 10.1103/PHYSREVB.25.1109