Design and analysis of separate-absorption-transport-charge-multiplication traveling-wave avalanche photodetectors

作者: C.-W. Liu , J.-W. Shi , Y.-H. Liu

DOI: 10.1109/JLT.2004.829230

关键词: VoltageFrequency responseMaterials scienceAttenuation lengthAvalanche diodeAvalanche photodiodeOptoelectronicsPower bandwidthAbsorption (electromagnetic radiation)PhotodetectorOptics

摘要: This paper proposes a novel type of avalanche photodiode-the separate-absorption-transport-charge-multiplication (SATCM) photodiode (APD). The design photoabsorption and multiplication layers APDs can avoid the layer breakdown hole-transport problems, exhibit low operation voltage, achieve ultra-high-gain bandwidth product performances. To excess noise ultra-high-speed performance in fiber communication regime (1.3/spl sim/1.55 /spl mu/m), simulated APD is Si-based with an SiGe-Si superlattice (SL) as traveling-wave geometric structures. frequency response by means photo-distributed current model, which includes all bandwidth-limiting factors, such dispersion microwave propagation loss, velocity mismatch, boundary reflection, multiplication/transport photogenerated carriers. By properly choosing thicknesses transport layers, effects structure be minimized without increasing voltage significantly. A near 30-Gb/s electrical 10/spl times/ gain achieved simultaneously, even long device absorption length (150 mu/m) (/spl sim/12 V). In addition, ultrahigh output saturation power this TWAPD also expected due to large volume superior microwave-guiding structure.

参考文章(45)
Klara Lyutovich, Erich Kasper, Properties of Silicon Germanium and SiGe: Carbon ,(1999)
S. Murthy, T. Jung, M.C. Wu, Z. Wang, W. Hsin, Linearity improvement in photodetectors by using index-matching layer extensions lasers and electro-optics society meeting. ,vol. 2, pp. 424- 425 ,(2002) , 10.1109/LEOS.2002.1159360
N. Shimizu, N. Watanabe, T. Furuta, T. Ishibashi, Bandwidth characteristics of InP/InGaAs uni-traveling-carrier photodiodes international topical meeting on microwave photonics. pp. 193- 194 ,(1998) , 10.1109/MWP.1998.745661
T. Nakata, T. Takeuchi, K. Makita, T. Torikai, High-speed and high-sensitivity waveguide InAlAs avalanche photodiodes for 10-40 Gb/s receivers LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242). ,vol. 2, pp. 770- 771 ,(2001) , 10.1109/LEOS.2001.969042
X.G. Zheng, J.S. Hsu, X. Sun, J.B. Hurst, X. Li, S. Wang, A.L.Jr. Holmes, J.C. Campbell, A.S. Huntington, L.A. Coldren, A 12 /spl times/ 12 In/sub 0.53/Ga/sub 0.47/As-In/sub 0.52/Al/sub 0.48/As avalanche photodiode array IEEE Journal of Quantum Electronics. ,vol. 38, pp. 1536- 1540 ,(2002) , 10.1109/JQE.2002.804297
Tak H. Ning, Yuan Taur, Fundamentals of Modern VLSI Devices ,(2004)
S. Hanatani, M. Shishikura, S. Tanaka, H. Kitano, T. Miyazaki, H. Nakamura, A strained InAlAs/InGaAs superlattice avalanche photodiode for operation at an IC-power-supply voltage international conference on indium phosphide and related materials. pp. 369- 372 ,(1995) , 10.1109/ICIPRM.1995.522156
C. Cohen-Jonathan, L. Giraudet, J.P. Praseuth, E. Legros, F. Heliot, A. Bonzo, Waveguide AlInAs/AlGaInAs avalanche photodiode for 20 Gbit/s photoreceivers international conference on indium phosphide and related materials. pp. 486- 489 ,(1997) , 10.1109/ICIPRM.1997.600201
H. Temkin, A. Antreasyan, N. A. Olsson, T. P. Pearsall, J. C. Bean, Ge0.6Si0.4 rib waveguide avalanche photodetectors for 1.3 μm operation Applied Physics Letters. ,vol. 49, pp. 809- 811 ,(1986) , 10.1063/1.97554
R. B. Emmons, Avalanche‐Photodiode Frequency Response Journal of Applied Physics. ,vol. 38, pp. 3705- 3714 ,(1967) , 10.1063/1.1710199