Role of silicon in diatom metabolism. V. Silicic acid transport and metabolism in the heterotrophic diatom Nitzschia alba.

作者: Farooq Azam , Barbara B. Hemmingsen , Benjamin E. Volcani

DOI: 10.1007/BF00403050

关键词: MetabolismMembrane transportValinomycinBiologyBiochemistryAntimycin ACell wallNigericinCycloheximideSilicic acid

摘要: 1. In the heterotrophic diatom, Nitzschia alba, 31Si(OH)4 appears to be transported by a carrier-mediated membrane transport system which conforms Michaelis-Menten type saturation kinetics with Ks of 4.5×10-6M and Vmax 3.35 gmmoles/g wet wt/min at 30°C. A Q10 2.0 was calculated from rates silicic acid uptake 20°C Calculations same data showed that energy activation for is 12.1 Kcal/mole. Optimum pH broad, ranging between 6 9. 2. During pulse-labelling 31Si(OH)4, label increases in cytoplasm more rapidly than cell wall, indicating build-up cytoplasmic pool or its derivatives, suggesting possible chemical transformation cytoplasm. The concentration 31Si reaches 30 40 times external concentration, but accumulated does not flow out into Si-free medium exchange non-radioative Si(OH)4. 3. The metabolic inhibitors DNP, CCCP, iodoacetamide, azide, antimycin strongly inhibit 90–97%, whereas ionophorous compounds, nigericin valinomycin, have no effect. 4. Inhibition protein synthesis cycloheximide inhibits 50–70%. 5. Germanic acid, an inhibitor diatom growth, uptake; Ki 2.2×10-6. 6. Sub-cellular fractionation cells exposed 10 min 90% wall; remaining 10% distributed various fractions including “soluble fraction”. 7. The demonstrate required net N. alba cells, suggest active may involved. role nature are discussed.

参考文章(57)
James J. Keirns, Ben Carritt, Jenny Freeman, Jerome M. Eisenstadt, Mark W. Bitensky, Adenosine 3',5' cyclic monophosphate in Euglena gracilis. Life Sciences. ,vol. 13, pp. 287- 302 ,(1973) , 10.1016/0024-3205(73)90220-8
W.M. Darley, B.E. Volcani, Role of silicon in diatom metabolism Experimental Cell Research. ,vol. 58, pp. 334- 342 ,(1969) , 10.1016/0014-4827(69)90514-X
Oswald Richter, Zur Physiologie der Diatomeen (I. Mitteilung) Sitzungsberichte.. ,vol. 115, pp. 27- 119 ,(1906)
W.M. Darley, B.E. Volcani, [7] Synchronized cultures: diatoms Methods in Enzymology. ,vol. 23, pp. 85- 96 ,(1971) , 10.1016/S0076-6879(71)23083-4
K. D. Brown, Formation of Aromatic Amino Acid Pools in Escherichia coli K-12 Journal of Bacteriology. ,vol. 104, pp. 177- 188 ,(1970) , 10.1128/JB.104.1.177-188.1970
Robert W. Bernlohr, Mari K. Haddox, Nelson D. Goldberg, Cyclic guanosine 3':5'-monophosphate in Escherichia coli and Bacillus lichenformis. Journal of Biological Chemistry. ,vol. 249, pp. 4329- 4331 ,(1974) , 10.1016/S0021-9258(19)42522-2
William W. Kay, Two aspartate transport systems in Escherichia coli. Journal of Biological Chemistry. ,vol. 246, pp. 7373- 7382 ,(1971) , 10.1016/S0021-9258(19)45896-1
Robert J. Kadner, Transport systems for L-methionine in Escherichia coli. Journal of Bacteriology. ,vol. 117, pp. 232- 241 ,(1974) , 10.1128/JB.117.1.232-241.1974