Undamped oscillations in prey-predator models on a finite size lattice

作者: Satoru Morita , Kei-ichi Tainaka

DOI: 10.1007/S10144-006-0257-0

关键词: AmplitudeMathematicsDensity dependenceSpectral densityPrey predatorPopulationLattice (group)Mathematical analysisStochastic differential equationOscillation

摘要: Sustained oscillation is frequently observed in population dynamics of biospecies. The comes not only from deterministic but also stochastic characteristics. In the present article, we deal with a finite size lattice which contains prey and predator. interaction between pair points carried out by two different methods; local global interactions. former, occurs adjacent sites, while latter takes place any sites. It found that both systems exhibit undamped oscillations. amplitude decreases increase total case interaction, can differential equation composed factors, i.e., Lotka–Volterra density dependence noise term. quantitative agreement theory simulation results almost perfect. qualitatively expresses characteristics sustainable for interaction.

参考文章(25)
Peter Turchin, Evolution in population dynamics Nature. ,vol. 424, pp. 257- 258 ,(2003) , 10.1038/424257A
Kei-ichi Tainaka, Shusaku Fukazawa, Spatial Pattern in a Chemical Reaction System: Prey and Predator in the Position-Fixed Limit Journal of the Physical Society of Japan. ,vol. 61, pp. 1891- 1894 ,(1992) , 10.1143/JPSJ.61.1891
José M. Pacheco, César Rodrı́guez, Isabel Fernández, Hopf bifurcations in predator–prey systems with social predator behaviour Ecological Modelling. ,vol. 105, pp. 83- 87 ,(1997) , 10.1016/S0304-3800(97)00140-3
Mercedes Pascual, Pierre Mazzega, Quasicycles revisited: apparent sensitivity to initial conditions. Theoretical Population Biology. ,vol. 64, pp. 385- 395 ,(2003) , 10.1016/S0040-5809(03)00086-8
Michel Droz, Andrzej Pȩkalski, Coexistence in a predator-prey system Physical Review E. ,vol. 63, pp. 051909- 051909 ,(2001) , 10.1103/PHYSREVE.63.051909
Yoshiaki Itoh, Kei-ichi Tainaka, Stochastic limit cycle with power-law spectrum Physics Letters A. ,vol. 189, pp. 37- 42 ,(1994) , 10.1016/0375-9601(94)90815-X
Adam Lipowski, Dorota Lipowska, Nonequilibrium phase transition in a lattice prey–predator system Physica A-statistical Mechanics and Its Applications. ,vol. 276, pp. 456- 464 ,(2000) , 10.1016/S0378-4371(99)00482-3
Roberto Rosà, Andrea Pugliese, Alessandro Villani, Annapaola Rizzoli, Individual-based vs deterministic models for macroparasites: host cycles and extinction. Theoretical Population Biology. ,vol. 63, pp. 295- 307 ,(2003) , 10.1016/S0040-5809(03)00021-2
R. M. NISBET, W. S. C. GURNEY, A simple mechanism for population cycles Nature. ,vol. 263, pp. 319- 320 ,(1976) , 10.1038/263319A0
Javier E. Satulovsky, Tânia Tomé, Stochastic lattice gas model for a predator-prey system Physical Review E. ,vol. 49, pp. 5073- 5079 ,(1994) , 10.1103/PHYSREVE.49.5073