Probabilistic assumption-based argumentation with DST evidence

作者: Nguyen duy Hung

DOI: 10.1109/IFSA-SCIS.2017.8023355

关键词: Probabilistic logicProbabilistic argumentationMathematicsArgumentation theoryArtificial intelligence

摘要: We study the relationships between two prominent approaches to, respectively, non-additive degrees of belief and probabilistic argumentation: Demspter-Shafer Theory (DST) Probabilistic Assumption-based Argumentation (PABA). In particular we show that each DST body evidence can be represented by a PABA framework, combination rules simulated canonical rule for combining frameworks. then develop framework capable taking directly besides logical knowledge. illustrate how this naturally models decision making situation alone seems ill-suited.

参考文章(18)
Rolf Haenni, None, Non-Additive Degrees of Belief Springer Netherlands. pp. 121- 159 ,(2009) , 10.1007/978-1-4020-9198-8_6
D. Dubois, H. Prade, P. Chatalic, An approach to approximate reasoning based on the Dempster rule of combination International Journal of Expert Systems archive. ,vol. 1, pp. 67- 85 ,(1987)
Phan Minh Thang, Phan Minh Dung, Towards (Probabilistic) Argumentation for Jury-based Dispute Resolution computational models of argument. pp. 171- 182 ,(2010)
Hengfei Li, Nir Oren, Timothy J. Norman, Probabilistic Argumentation Frameworks Theorie and Applications of Formal Argumentation. pp. 1- 16 ,(2012) , 10.1007/978-3-642-29184-5_1
Sylwia Polberg, Dragan Doder, Probabilistic Abstract Dialectical Frameworks european conference on logics in artificial intelligence. pp. 591- 599 ,(2014) , 10.1007/978-3-319-11558-0_42
P.M. Dung, P. Mancarella, F. Toni, Computing ideal sceptical argumentation Artificial Intelligence. ,vol. 171, pp. 642- 674 ,(2007) , 10.1016/J.ARTINT.2007.05.003
P. Smets, The combination of evidence in the transferable belief model IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 12, pp. 447- 458 ,(1990) , 10.1109/34.55104
Henry Prakken, An abstract framework for argumentation with structured arguments Argument & Computation. ,vol. 1, pp. 93- 124 ,(2010) , 10.1080/19462160903564592
J. Kohlas, D. Berzati, R. Haenni, Probabilistic Argumentation Systems and Abduction Annals of Mathematics and Artificial Intelligence. ,vol. 34, pp. 177- 195 ,(2002) , 10.1023/A:1014482025714
Anthony Hunter, A probabilistic approach to modelling uncertain logical arguments International Journal of Approximate Reasoning. ,vol. 54, pp. 47- 81 ,(2013) , 10.1016/J.IJAR.2012.08.003