Nanodomain Engineering in Ferroelectric Crystals Using High Voltage Atomic Force Microscopy

作者: Y. Rosenwaks , M. Molotskii , A. Agronin , P. Urenski , M. Shvebelman

DOI: 10.1007/978-3-662-08901-9_8

关键词: Piezoresponse force microscopyElectrical breakdownField (physics)Domain wall (magnetism)Electric fieldFerroelectricityCharacterization (materials science)High voltageOptoelectronicsNanotechnologyMaterials science

摘要: Reversal of the spontaneous polarization direction under an applied electric field is a basic property ferroelectrics. However traditional techniques used for fabrication domain gratings have been able to produce domains not smaller then 2 µm. Sub-micron and nanometer scale may be fabricated using atomic force microscopy based techniques; however, date there was no success in fabricating stable that elongate without widening throughout thick A breakthrough emerged with recent development high voltage microscope has enabled us obtain sub-micrometer configurations bulk ferroelectric crystals. comprehensive experimental theoretical description nanodomain engineering on presented. It found string-like are formed due super-high tip. The domains, which resemble channels electrical breakdown, nucleate around 107 V/cm at surface, grow crystal where external practically zero. theory explaining shape shows driving breakdown decrease total free energy system increasing length. tailoring two-dimensional strip-like nanodomains 250 micron RbTiOPO4 single Studying influence voltage, tip velocity strips allowed fabricate (with width 590 nm) useful backward-propagating quasi-phase-matched frequency conversion. Some important aspects structure characterization presented discussed. In last sections we show amplitude contrast contact AFM imaging mode largely affected by difference work functions antiparallel domains. shown direct measurement piezoelectric coefficient can performed microscope.

参考文章(92)
Venkatraman Gopalan, Norman A. Sanford, J.A. Aust, K. Kitamura, Y. Furukawa, Crystal growth, characterization, and domain studies in lithium niobate and lithium tantalate ferroelectrics Handbook of Advanced Electronic and Photonic Materials and Devices. ,vol. 4, pp. 57- 114 ,(2001) , 10.1016/B978-012513745-4/50037-8
F. F. Volʹkenshteĭn, E. J. H. Birch, Norman G. Anderson, The electronic theory of catalysis on semiconductors Pergamon Press. ,(1963)
Paul Lorrain, Dale R. Corson, Electromagnetic fields and waves ,(1970)
Yu-Guo Wang, Wolfgang Kleemann, Theo Woike, Rainer Pankrath, Atomic force microscopy of domains and volume holograms in Sr 0.61 Ba 0.39 Nb 2 O 6 : C e 3 + Physical Review B. ,vol. 61, pp. 3333- 3336 ,(2000) , 10.1103/PHYSREVB.61.3333
P. Urenski, M. Molotskii, G. Rosenman, Bulk ferroelectric domain nucleation in KTiOPO4 crystals Applied Physics Letters. ,vol. 79, pp. 2964- 2966 ,(2001) , 10.1063/1.1413959
G Rosenman, A Skliar, M Oron, M Katz, Polarization reversal in crystals Journal of Physics D: Applied Physics. ,vol. 30, pp. 277- 282 ,(1997) , 10.1088/0022-3727/30/2/016
David A. Scrymgeour, Alok Sharan, Venkatraman Gopalan, Kevin T. Gahagan, Joanna L. Casson, Robert Sander, Jeanne M. Robinson, Fikri Muhammad, Premanand Chandramani, Fouad Kiamilev, Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics Applied Physics Letters. ,vol. 81, pp. 3140- 3142 ,(2002) , 10.1063/1.1516232
Yasuo Cho, Kenjiro Fujimoto, Yoshiomi Hiranaga, Yasuo Wagatsuma, Atsushi Onoe, Kazuya Terabe, Kenji Kitamura, Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy Applied Physics Letters. ,vol. 81, pp. 4401- 4403 ,(2002) , 10.1063/1.1526916
R. Shikler, N. Fried, T. Meoded, Y. Rosenwaks, Measuring minority-carrier diffusion length using a Kelvin probe force microscope Physical Review B. ,vol. 61, pp. 11041- 11046 ,(2000) , 10.1103/PHYSREVB.61.11041