Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.

作者: Shailesh Sharma , David Gahan , Paul Scullin , James Doyle , Jj Lennon

DOI: 10.1063/1.4946788

关键词: Radio frequencyCrystalQuartz crystal microbalanceMaterials scienceOptoelectronicsThin filmDeposition (phase transition)SputteringPulsed DCSputter deposition

摘要: A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. calibration method is presented compensate for temperature effects in crystal. metal ionization of ions location are investigated an asymmetric bipolar pulsed dc magnetron sputtering reactor under rf conditions. diagnostic this research work does not suffer from complications caused by water cooling arrangements maintain constant attractive technique characterizing a thin film system.

参考文章(23)
SM Rossnagel, J Hopwood, Metal ion deposition from ionized mangetron sputtering discharge Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. ,vol. 12, pp. 449- 453 ,(1994) , 10.1116/1.587142
T. G. Snodgrass, J. H. Booske, W. Wang, A. E. Wendt, J. L. Shohet, Gridless ionized metal flux fraction measurement tool for use in ionized physical vapor deposition studies Review of Scientific Instruments. ,vol. 70, pp. 1525- 1529 ,(1999) , 10.1063/1.1149618
P Poolcharuansin, M Bowes, T J Petty, J W Bradley, Ionized metal flux fraction measurements in HiPIMS discharges Journal of Physics D. ,vol. 45, pp. 322001- ,(2012) , 10.1088/0022-3727/45/32/322001
D. B. Hayden, D. R. Juliano, K. M. Green, D. N. Ruzic, C. A. Weiss, K. A. Ashtiani, T. J. Licata, Characterization of magnetron-sputtered partially ionized aluminum deposition Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. ,vol. 16, pp. 624- 627 ,(1998) , 10.1116/1.581078
S. M. Rossnagel, J. Hopwood, Magnetron sputter deposition with high levels of metal ionization Applied Physics Letters. ,vol. 63, pp. 3285- 3287 ,(1993) , 10.1063/1.110176
S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, F. Milde, Pulsed magnetron sputter technology Surface and Coatings Technology. ,vol. 61, pp. 331- 337 ,(1993) , 10.1016/0257-8972(93)90248-M
Liang Meng, Ramasamy Raju, Randolph Flauta, Hyungjoo Shin, David N. Ruzic, Douglas B. Hayden, In situ plasma diagnostics study of a commercial high-power hollow cathode magnetron deposition tool Journal of Vacuum Science and Technology. ,vol. 28, pp. 112- 118 ,(2010) , 10.1116/1.3271132
D. Gahan, B. Dolinaj, M. B. Hopkins, Retarding field analyzer for ion energy distribution measurements at a radio-frequency biased electrode Review of Scientific Instruments. ,vol. 79, pp. 033502- ,(2008) , 10.1063/1.2890100
K. M. Green, D. B. Hayden, D. R. Juliano, D. N. Ruzic, Determination of flux ionization fraction using a quartz crystal microbalance and a gridded energy analyzer in an ionized magnetron sputtering system Review of Scientific Instruments. ,vol. 68, pp. 4555- 4560 ,(1997) , 10.1063/1.1148430