Using phage display technology to obtain Crybodies active against non-target insects.

作者: Tania Domínguez-Flores , María Dolores Romero-Bosquet , Diana Marcela Gantiva-Díaz , María José Luque-Navas , Colin Berry

DOI: 10.1038/S41598-017-09384-X

关键词: BiopanningBiologyAedes aegyptiGeneticsInsectGenetically modified cropsPhage displayCloningBacillus thuringiensisToxin

摘要: The insecticidal Cry toxins produced by Bacillus thuringiensis (Bt) are increasingly important in the biological control of insect pests and vectors human disease. Markets for Bt products transgenic plants expressing their driven specificity, safety move away from chemical agents. However, high specificity can also prove to be a limitation when there is no known toxin active against particular target. Novel activities discovered screening natural isolates or through modifications proteins. Here we demonstrate use λ-phage displaying Cry1Aa13 variants modified domain II loop 2 (Crybodies) select retargeted toxins. Through biopanning using gut tissue larvae non-target Aedes aegypti, isolated number phage further testing. Two overexpressed showed significant activity A. aegypti while another induced mortality at pupal stage. We present first report display identify novel toward insects distant taxonomic Orders establish this technology based on Crybodies as powerful tool developing tailor-made insecticides new target insects.

参考文章(78)
Jae Young Choi, Ming Shun Li, Jong Yul Roh, Hee Jin Shim, Yeon Ho Je, Kyung Saeng Boo, Soo-Dong Woo, Byung Rae Jin, Isolation and characterization of strain of Bacillus thuringiensis subsp. kenyae containing two novel cry1-type toxin genes. Journal of Microbiology and Biotechnology. ,vol. 17, pp. 1498- 1503 ,(2007)
Noel A. Roberts, Sally Redshaw, Discovery and Development of the HIV Proteinase Inhibitor Ro 31-8959 The Search for Antiviral Drugs. pp. 129- 151 ,(1993) , 10.1007/978-1-4899-6718-3_6
Alejandra Bravo, Isabel Gómez, Helena Porta, Blanca Ines García-Gómez, Claudia Rodriguez-Almazan, Liliana Pardo, Mario Soberón, Evolution of Bacillus thuringiensis Cry toxins insecticidal activity Microbial Biotechnology. ,vol. 6, pp. 17- 26 ,(2013) , 10.1111/J.1751-7915.2012.00342.X
Ninfa María Rosas-García, Avances en el desarrollo de formulaciones insecticidas a base de Bacillus thuringiensis Revista Colombiana de Biotecnología. ,vol. 10, pp. 49- 63 ,(2008)
Joel P Siegel, The mammalian safety of Bacillus thuringiensis-based insecticides. Journal of Invertebrate Pathology. ,vol. 77, pp. 13- 21 ,(2001) , 10.1006/JIPA.2000.5000
William P Donovan, Judith C Donovan, James T Engleman, Gene Knockout Demonstrates That vip3A Contributes to the Pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua Journal of Invertebrate Pathology. ,vol. 78, pp. 45- 51 ,(2001) , 10.1006/JIPA.2001.5037
William P. Donovan, James T. Engleman, Judith C. Donovan, James A. Baum, Greg J. Bunkers, David J. Chi, William P. Clinton, Leigh English, Gregory R. Heck, Oliver M. Ilagan, Karina C. Krasomil-Osterfeld, John W. Pitkin, James K. Roberts, Matthew R. Walters, Discovery and characterization of Sip1A: A novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae. Applied Microbiology and Biotechnology. ,vol. 72, pp. 713- 719 ,(2006) , 10.1007/S00253-006-0332-7
Ratna K. Vadlamudi, Eric Weber, Inhae Ji, Tae H. Ji, Lee A. Bulla, Cloning and Expression of a Receptor for an Insecticidal Toxin ofBacillus thuringiensis Journal of Biological Chemistry. ,vol. 270, pp. 5490- 5494 ,(1995) , 10.1074/JBC.270.10.5490