Qualitative pattern recognition in chemistry: Theoretical background and practical guidelines

作者: Paolo Oliveri , Cristina Malegori , Eleonora Mustorgi , Monica Casale

DOI: 10.1016/J.MICROC.2020.105725

关键词: Artificial intelligencePattern recognitionDiscriminantPattern recognition (psychology)Experimental dataQualitative researchFocus (computing)Chemistry (relationship)Class membership

摘要: Abstract Qualitative pattern recognition methods find important applications in the chemometric sector to extract structured information from complex experimental data. Two main strategies can be distinguished: unsupervised analysis, aimed at investigating on presence of groupings within samples analysed, and supervised predicting class membership new samples. Supervised qualitative are, turn, divided two families: discriminant class-modelling methods. The first ones require least classes defined, while second are suitable also for one-class classification. features each strategy, with a focus advantages limitations, described compared. New trends methods, as well recent attempts force behave ones, vice versa, critically presented.

参考文章(67)
Ewa Szymańska, Jan Gerretzen, Jasper Engel, Brigitte Geurts, Lionel Blanchet, Lutgarde M.C. Buydens, Chemometrics and qualitative analysis have a vibrant relationship Trends in Analytical Chemistry. ,vol. 69, pp. 34- 51 ,(2015) , 10.1016/J.TRAC.2015.02.015
B Massart, Q Guo, F Questier, D.L Massart, C Boucon, S de Jong, B.G.M Vandeginste, Data structures and data transformations for clustering chemical data Trends in Analytical Chemistry. ,vol. 20, pp. 35- 41 ,(2001) , 10.1016/S0167-2940(01)90097-4
Michele Forina, Carla Armanino, Riccardo Leardi, Giuliana Drava, A class-modelling technique based on potential functions Journal of Chemometrics. ,vol. 5, pp. 435- 453 ,(1991) , 10.1002/CEM.1180050504
Lu Xu, Si-Min Yan, Chen-Bo Cai, Xiao-Ping Yu, One-class partial least squares (OCPLS) classifier Chemometrics and Intelligent Laboratory Systems. ,vol. 126, pp. 1- 5 ,(2013) , 10.1016/J.CHEMOLAB.2013.04.008
M.P. Derde, D.L. Massart, UNEQ: a disjoint modelling technique for pattern recognition based on normal distribution Analytica Chimica Acta. ,vol. 184, pp. 33- 51 ,(1986) , 10.1016/S0003-2670(00)86468-5
A. C. Duarte, S. Capelo, Application of Chemometrics in Separation Science Journal of Liquid Chromatography & Related Technologies. ,vol. 29, pp. 1143- 1176 ,(2006) , 10.1080/10826070600574929
M. P. Derde, D. L. Massart, UNEQ: A class modelling supervised pattern recognition technique Mikrochimica Acta. ,vol. 89, pp. 139- 152 ,(1986) , 10.1007/BF01207313
Néstor F. Pérez, Joan Ferré, Ricard Boqué, Calculation of the reliability of classification in discriminant partial least-squares binary classification Chemometrics and Intelligent Laboratory Systems. ,vol. 95, pp. 122- 128 ,(2009) , 10.1016/J.CHEMOLAB.2008.09.005
Lars Petersen, Pentti Minkkinen, Kim H. Esbensen, Representative Sampling for reliable data analysis: Theory Of Sampling Chemometrics and Intelligent Laboratory Systems. ,vol. 77, pp. 261- 277 ,(2005) , 10.1016/J.CHEMOLAB.2004.09.013
Paolo Oliveri, M. Isabel López, M. Chiara Casolino, Itziar Ruisánchez, M. Pilar Callao, Luca Medini, Silvia Lanteri, Partial least squares density modeling (PLS-DM) – A new class-modeling strategy applied to the authentication of olives in brine by near-infrared spectroscopy Analytica Chimica Acta. ,vol. 851, pp. 30- 36 ,(2014) , 10.1016/J.ACA.2014.09.013