Direct epicardial shock wave therapy improves ventricular function and induces angiogenesis in ischemic heart failure.

作者: Daniel Zimpfer , Seyedhossein Aharinejad , Johannes Holfeld , Anita Thomas , Julia Dumfarth

DOI: 10.1016/J.JTCVS.2008.11.006

关键词: MedicineNeovascularizationHeart diseaseCirculatory systemMyocardial infarction complicationsMyocardial infarctionBrain natriuretic peptideInternal medicineHeart failureIschemiaCardiology

摘要: Objectives Direct application of low-energy unfocused shock waves induces angiogenesis in ischemic soft tissue. The potential effects epicardial wave therapy applied direct contact to myocardium are uncertain. Methods For induction heart failure a rodent model, left anterior descending artery ligation was performed adult Sprague–Dawley rats. After 4 weeks, reoperation with (treatment group, n=60) or without (control performed. Low-energy were the infarcted (300 impulses at 0.38 mJ/m 2 ). Additionally, healthy animals (n = 30) normal studied. Angiogenesis, ventricular function upregulation growth factors, and brain natriuretic peptide levels analyzed. Results Histologic analysis revealed significant 6 weeks group: 8.2 ± 3.7 vs control 2.9 1.9 vessels per field, P .016) 14 7.1 3.1 3.2 1.8 .011) after treatment. In treatment group improved throughout follow-up period (6 weeks: 37.4% 9% [ Conclusion improves model failure.

参考文章(34)
Charles E. Murry, Hans Reinecke, Lil M. Pabon, Regeneration Gaps: Observations on Stem Cells and Cardiac Repair Journal of the American College of Cardiology. ,vol. 47, pp. 1777- 1785 ,(2006) , 10.1016/J.JACC.2006.02.002
Peter Carmeliet, Mechanisms of angiogenesis and arteriogenesis. Nature Medicine. ,vol. 6, pp. 389- 395 ,(2000) , 10.1038/74651
Peter Carmeliet, VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nature Medicine. ,vol. 6, pp. 1102- 1103 ,(2000) , 10.1038/80430
Jeffrey M. Isner, Myocardial gene therapy Nature. ,vol. 415, pp. 234- 239 ,(2002) , 10.1038/415234A
A. Gutersohn, G. Caspari, R. Erbel, Upregulation of Vascular endothelial growth factor m-RNA in Human umbilical vascular endothelial cells via shock waves European Journal of Heart Failure. ,vol. 2, pp. 42- 42 ,(2000) , 10.1016/S1388-9842(00)80143-9
Alexandra Aicher, Christopher Heeschen, Ken-ichiro Sasaki, Carmen Urbich, Andreas M. Zeiher, Stefanie Dimmeler, Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia Circulation. ,vol. 114, pp. 2823- 2830 ,(2006) , 10.1161/CIRCULATIONAHA.106.628623
Ahmed A. Khattab, Broder Brodersen, Daniela Schuermann-Kuchenbrandt, Hans Beurich, Ralph Tölg, Volker Geist, Torsten Schäfer, Gert Richardt, Extracorporeal cardiac shock wave therapy: First experience in the everyday practice for treatment of chronic refractory angina pectoris International Journal of Cardiology. ,vol. 121, pp. 84- 85 ,(2007) , 10.1016/J.IJCARD.2006.08.030
Charles E. Murry, Loren J. Field, Philippe Menasché, Cell-Based Cardiac Repair Reflections at the 10-Year Point Circulation. ,vol. 112, pp. 3174- 3183 ,(2005) , 10.1161/CIRCULATIONAHA.105.546218
Robert C. Hendel, Timothy D. Henry, Krishna Rocha-Singh, Jeffrey M. Isner, Dean J. Kereiakes, Frank J. Giordano, Michael Simons, Robert O. Bonow, Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation. ,vol. 101, pp. 118- 121 ,(2000) , 10.1161/01.CIR.101.2.118
H F Weisman, D E Bush, J A Mannisi, M L Weisfeldt, B Healy, Cellular mechanisms of myocardial infarct expansion. Circulation. ,vol. 78, pp. 186- 201 ,(1988) , 10.1161/01.CIR.78.1.186