Equidistribution of Neumann data mass on triangles

作者: Hans Christianson

DOI: 10.1090/PROC/13742

关键词: EigenfunctionNorm (mathematics)Dirichlet distributionVon Neumann algebraNeumann boundary conditionSimple (abstract algebra)MathematicsCombinatoricsExact formula

摘要: In this paper we study the behaviour of Neumann data Dirichlet eigenfunctions on triangles. We prove that $L^2$ norm (semi-classical) each side is equal to length divided by area triangle. The novel feature result it {\it not} an asymptotic, but exact formula. proof simple integrations parts.

参考文章(7)
Patrick G�rard, Eric Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem Duke Mathematical Journal. ,vol. 71, pp. 559- 607 ,(1993) , 10.1215/S0012-7094-93-07122-0
John A. Toth, Steve Zelditch, Quantum Ergodic Restriction Theorems. I: Interior Hypersurfaces in Domains with Ergodic Billiards Annales Henri Poincaré. ,vol. 13, pp. 599- 670 ,(2012) , 10.1007/S00023-011-0154-8
N. Burq, P. Gérard, N. Tzvetkov, Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds Duke Mathematical Journal. ,vol. 138, pp. 445- 486 ,(2007) , 10.1215/S0012-7094-07-13834-1
Andrew Hassell, Steve Zelditch, Quantum ergodicity of boundary values of eigenfunctions Communications in Mathematical Physics. ,vol. 248, pp. 119- 168 ,(2004) , 10.1007/S00220-004-1070-2
H. Christianson, A. Hassell, J. A. Toth, Exterior mass estimates and L2-restriction bounds for neumann data along hypersurfaces International Mathematics Research Notices. ,vol. 2015, pp. 1638- 1665 ,(2014) , 10.1093/IMRN/RNT342
John A. Toth, Steve Zelditch, Quantum Ergodic Restriction Theorems: Manifolds Without Boundary Geometric and Functional Analysis. ,vol. 23, pp. 715- 775 ,(2013) , 10.1007/S00039-013-0220-0
Hans Christianson, John A. Toth, Steve Zelditch, Quantum ergodic restriction for Cauchy data: Interior QUE and restricted QUE Mathematical Research Letters. ,vol. 20, pp. 465- 475 ,(2013) , 10.4310/MRL.2013.V20.N3.A5