作者: M.A. Jafarizadeh , S. Behnia
DOI: 10.1016/S0167-2789(01)00325-6
关键词: Mathematical analysis 、 Ergodic theory 、 Bifurcation 、 Mathematics 、 Lyapunov exponent 、 Period-doubling bifurcation 、 Attractor 、 Fixed point 、 Chaotic 、 Invariant measure
摘要: Abstract Hierarchy of one-parameter families chaotic maps with an invariant measure have been introduced, where their appropriate coupling has led to the generation some coupled measure. It is shown that these (also maps) do not undergo any period doubling or period-n-tupling cascade bifurcation chaos, but they either single fixed point attractor at certain values parameters are ergodic in complementary region. Using Sinai–Ruelle–Bowen Kolmogrov–Sinai entropy (coupled calculated analytically, numerical simulations support results.