Hierarchy of chaotic maps with an invariant measure and their coupling

作者: M.A. Jafarizadeh , S. Behnia

DOI: 10.1016/S0167-2789(01)00325-6

关键词: Mathematical analysisErgodic theoryBifurcationMathematicsLyapunov exponentPeriod-doubling bifurcationAttractorFixed pointChaoticInvariant measure

摘要: Abstract Hierarchy of one-parameter families chaotic maps with an invariant measure have been introduced, where their appropriate coupling has led to the generation some coupled measure. It is shown that these (also maps) do not undergo any period doubling or period-n-tupling cascade bifurcation chaos, but they either single fixed point attractor at certain values parameters are ergodic in complementary region. Using Sinai–Ruelle–Bowen Kolmogrov–Sinai entropy (coupled calculated analytically, numerical simulations support results.

参考文章(11)
T. Gilbert, C. D. Ferguson, J. R. Dorfman, Field driven thermostated systems: A nonlinear multibaker map Physical Review E. ,vol. 59, pp. 364- 371 ,(1999) , 10.1103/PHYSREVE.59.364
M. V. Jakobson, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps Communications in Mathematical Physics. ,vol. 81, pp. 39- 88 ,(1981) , 10.1007/BF01941800
S. Tasaki, Thomas Gilbert, J. R. Dorfman, An analytical construction of the SRB measures for Baker-type maps Chaos: An Interdisciplinary Journal of Nonlinear Science. ,vol. 8, pp. 424- 443 ,(1998) , 10.1063/1.166324
Ken Umeno, METHOD OF CONSTRUCTING EXACTLY SOLVABLE CHAOS Physical Review E. ,vol. 55, pp. 5280- 5284 ,(1997) , 10.1103/PHYSREVE.55.5280
Gerhard Keller, Michael Blank, Random perturbations of chaotic dynamical systems: stability of the spectrum Nonlinearity. ,vol. 11, pp. 1351- 1364 ,(1998) , 10.1088/0951-7715/11/5/010
S. Tasaki, Z. Suchanecki, I. Antoniou, Ergodic properties of piecewise linear maps on fractal repellers Physics Letters A. ,vol. 179, pp. 103- 110 ,(1993) , 10.1016/0375-9601(93)90657-L
Ken Umeno, Chaotic Monte Carlo Computation: A Dynamical Effect of Random-Number Generations Japanese Journal of Applied Physics. ,vol. 39, pp. 1442- 1456 ,(2000) , 10.1143/JJAP.39.1442
J. R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics An Introduction to Chaos in Nonequilibrium Statistical Mechanics. pp. 302- ,(1999) , 10.1017/CBO9780511628870
S. V. Fomin, Y. G. Sinai, I.P. Cornfeld, Ergodic Theory ,(1982)