On inferring and interpreting genetic population structure - applications to conservation, and the estimation of pairwise genetic relatedness

作者: Arun Sethuraman

DOI: 10.31274/ETD-180810-4295

关键词: EcologyPhylogeographyBiologyPopulation geneticsPopulationConservation geneticsEmys blandingiiPairwise comparisonGenetic structureQuantitative genetics

摘要: The presence of population structure is ubiquitous in most wild populations species. Detecting genetic and understanding its consequences for the evolutionary trajectories species has shaped a lot our process evolution. This delineation subdivision within plays an important role several allied fields, including conservation genetics, association studies, phylogeography, quantitative genetics. dissertation addresses methods to infer interpret subpopulation structure. In this regards, I discuss standing motivation developing new analytic tools, classic population genetics study imperiled freshwater turtle, Emys blandingii, development fast, likelihood based estimator structure, MULTICLUST, method pairwise relatedness structure. Our analyses midwestern blandingii detected considerable among sampled localities, revealed ancestral gene flow E. region north east from ancient refugium central Great Plains, concordant with post-glacial recolonization timescales. data further implied unexpected links between geographically disparate Nebraska Illinois. Our encourages decisions be mindful uniqueness across primary range. Analyses both simulated empirical suggests that MULTICLUST infers consistently (reproducible results), time effcient, compared popular Bayesian MCMC tool, STRUCTURE (Pritchard et al. (2000b)). also least bias, mean squared error estimating relatedness in full-sibling, half-sibling, parent-offspring, variety other related dyads, Anderson Weir (2007), Queller Goodnight (1989), Lynch Ritland (1999). Overall, lays grounds interesting biological statistical questions can addressed robust framework identification

参考文章(153)
Kermit Ritland, Michael Lynch, Estimation of Pairwise Relatedness With Molecular Markers Genetics. ,vol. 152, pp. 1753- 1766 ,(1999) , 10.1093/GENETICS/152.4.1753
Jukka Corander, Mikko J Sillanpää, Patrik Waldmann, Bayesian analysis of genetic differentiation between populations. Genetics. ,vol. 163, pp. 367- 374 ,(2003) , 10.1093/GENETICS/163.1.367
Jinliang Wang, An estimator for pairwise relatedness using molecular markers. Genetics. ,vol. 160, pp. 1203- 1215 ,(2002) , 10.1093/GENETICS/160.3.1203
Estimation of relatedness by DNA fingerprinting. Molecular Biology and Evolution. ,vol. 5, pp. 584- 599 ,(1988) , 10.1093/OXFORDJOURNALS.MOLBEV.A040518
OLIVIER FRANÇOIS, ERIC DURAND, Spatially explicit Bayesian clustering models in population genetics. Molecular Ecology Resources. ,vol. 10, pp. 773- 784 ,(2010) , 10.1111/J.1755-0998.2010.02868.X
S. URSENBACHER, M. CARLSSON, V. HELFER, H. TEGELSTRÖM, L. FUMAGALLI, Phylogeography and Pleistocene refugia of the adder ( Vipera berus ) as inferred from mitochondrial DNA sequence data Molecular Ecology. ,vol. 15, pp. 3425- 3437 ,(2006) , 10.1111/J.1365-294X.2006.03031.X
Paul A. Hohenlohe, Susan Bassham, Paul D. Etter, Nicholas Stiffler, Eric A. Johnson, William A. Cresko, Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags PLoS Genetics. ,vol. 6, pp. e1000862- ,(2010) , 10.1371/JOURNAL.PGEN.1000862
C. STERN, THE HARDY-WEINBERG LAW. Science. ,vol. 97, pp. 137- 138 ,(1943) , 10.1126/SCIENCE.97.2510.137
David C. Queller, Keith F. Goodnight, ESTIMATING RELATEDNESS USING GENETIC MARKERS Evolution. ,vol. 43, pp. 258- 275 ,(1989) , 10.1111/J.1558-5646.1989.TB04226.X