作者: Pascal Vallotton , David E. James , William E. Hughes , Tuan D. Pham , Xiaobo Zhou
DOI: 10.1063/1.2816641
关键词: Artificial intelligence 、 Video tracking 、 Chemistry 、 Biophysics 、 Total internal reflection fluorescence microscope 、 Microscopy 、 Fusion 、 Vesicle 、 Membrane vesicle 、 Membrane 、 Vesicle fusion 、 Computer vision
摘要: Total Internal Reflection Fluorescence Microscopy (TIRFM) is imposing itself as the tool of choice for studying biological activity in close proximity to plasma membrane. For example, exquisite selectivity TIRFM allows monitoring diffusion GFP‐phogrin vesicles and their recruitment membrane pancreatic β‐cells. We present a novel computer vision system automatically identifying elusive fusion events with Our method based on robust object tracking matched filtering. It should accelerate quantification data allow extraction more information from image support research diabetes obesity.