Energy Efficiency Evaluation of Manufacturing Systems by Considering Relevant Influencing Factors

作者: Dominik Flick , Li Ji , Patrick Dehning , Sebastian Thiede , Christoph Herrmann

DOI: 10.1016/J.PROCIR.2017.03.097

关键词: StandardizationEfficient energy useRisk analysis (engineering)Manufacturing systemsEnergy (signal processing)Principal component regressionFloor levelEngineeringEnergy performanceResidualReliability engineering

摘要: Abstract Recent developments show an increasing interest in energy efficiency of different stakeholders like industry, customers and legislation. Against this background the paper provides insight how a data based evaluation on shop floor level could help to evaluate performance comparable manufacturing systems will provide incipient stages for improvement. The approach is mainly residual analyzing multiple linear regression models. Additionally through coefficient standardization influencing factors get quantified therefore directly identify fields

参考文章(15)
Sanford Weisberg, John Fox, An R Companion to Applied Regression ,(2010)
Ruud G. C. Beerkens, Johannes van Limpt, Energy efficiency benchmarking of glass furnaces Glass science and technology. ,vol. 77, pp. 93- 105 ,(2008) , 10.1002/9780470294727.CH7
W Li, S Kara, An empirical model for predicting energy consumption of manufacturing processes: a case of turning process: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. ,vol. 225, pp. 1636- 1646 ,(2011) , 10.1177/2041297511398541
Wulff Plinke, Klaus Backhaus, Bernd Erichson, Rolf Weiber, Multivariate Analysemethoden: Eine Anwendungsorientierte Einfuhrung ,(1993)
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, An introduction to statistical learning Springer New York. ,(2013) , 10.1007/978-1-4614-7138-7
Patrick Dehning, Sebastian Thiede, Mark Mennenga, Christoph Herrmann, Factors influencing the energy intensity of automotive manufacturing plants Journal of Cleaner Production. ,vol. 142, pp. 2305- 2314 ,(2017) , 10.1016/J.JCLEPRO.2016.11.046