Prostate Cancer Detection Using Computed Very High b-value Diffusion-weighted Imaging: How High Should We Go?

作者: Andrew B. Rosenkrantz , Nainesh Parikh , Andrea S. Kierans , Max Xiangtian Kong , James S. Babb

DOI: 10.1016/J.ACRA.2016.02.003

关键词: High-B-Value Diffusion-Weighted ImagingProstatectomyProstate cancerGeneralized estimating equationSpearman's rank correlation coefficientLogistic regressionMagnetic resonance imagingMedicineRadiologyProstate

摘要: Rationale and Objectives The aim of this study was to assess prostate cancer detection using a broad range computed b-values up 5000 s/mm2. Materials Methods This retrospective Health Insurance Portability Accountability Act-compliant approved by an institutional review board with consent waiver. Forty-nine patients (63 ± 8 years) underwent 3T magnetic resonance imaging before prostatectomy. Examinations included diffusion-weighted (DWI) 50 1000 s/mm2. Seven DWI image sets (b-values: 1000, 1500, 2000, 2500, 3000, 4000, 5000 s/mm2) were generated mono-exponential fit. Two blinded radiologists (R1 [attending], R2 [fellow]) independently evaluated diffusion weighted for quality dominant lesion location. A separate unblinded radiologist placed regions interest measure tumor-to-peripheral zone (PZ) contrast. Pathologic findings from prostatectomy served as reference standard. Measures compared between the Jonckheere-Terpstra trend test, Spearman correlation coefficient, generalized estimating equations based on logistic regression correlated data. Results As b-value increased, tumor-to-PZ contrast benign suppression both readers increased (r = +0.65 +0.71, P ≤ 0.001), whereas anatomic clarity, visualization capsule, peripheral-transition edge decreased (r = −0.69 −0.75, P ≤ 0.003). Sensitivity tumor highest R1 at b1500–3000 (84%–88%) b1500–2500 (70%–76%). Sensitivities pathologic outcomes lower b1000 b-values. Gleason >6 (90%–93%) 1500–2500 (78%–80%). positive predictive value similar 4000 (93%–98%) b1500 (88%–94%). Conclusions Computed in 1500–2500 s/mm2 (but not higher) optimal detection; 1000 or 3000–5000 exhibited overall performance.

参考文章(19)
Andrew B. Rosenkrantz, Nicole Hindman, Ruth P. Lim, Kasturi Das, James S. Babb, Thais C. Mussi, Samir S. Taneja, Diffusion‐weighted imaging of the prostate: Comparison of b1000 and b2000 image sets for index lesion detection Journal of Magnetic Resonance Imaging. ,vol. 38, pp. 694- 700 ,(2013) , 10.1002/JMRI.24016
Andrew B. Rosenkrantz, Anwar R. Padhani, Thomas L. Chenevert, Dow-Mu Koh, Frederik De Keyzer, Bachir Taouli, Denis Le Bihan, Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice Journal of Magnetic Resonance Imaging. ,vol. 42, pp. 1190- 1202 ,(2015) , 10.1002/JMRI.24985
Y Ueno, S Takahashi, Y Ohno, K Kitajima, M Yui, Y Kassai, F Kawakami, H Miyake, K Sugimura, Computed diffusion-weighted MRI for prostate cancer detection: the influence of the combinations of b-values British Journal of Radiology. ,vol. 88, pp. 20140738- 20140738 ,(2015) , 10.1259/BJR.20140738
Francisco Donato, Daniel N. Costa, Qing Yuan, Neil M. Rofsky, Robert E. Lenkinski, Ivan Pedrosa, Geometric Distortion in Diffusion-weighted MR Imaging of the Prostate—Contributing Factors and Strategies for Improvement Academic Radiology. ,vol. 21, pp. 817- 823 ,(2014) , 10.1016/J.ACRA.2014.02.001
Metin Vural, Gökhan Ertaş, Aslıhan Onay, Ömer Acar, Tarık Esen, Yeşim Sağlıcan, Hale Pınar Zengingönül, Sergin Akpek, Conspicuity of peripheral zone prostate cancer on computed diffusion-weighted imaging: comparison of cDWI1500, cDWI2000, and cDWI3000. BioMed Research International. ,vol. 2014, pp. 768291- 768291 ,(2014) , 10.1155/2014/768291
Andrew B. Rosenkrantz, Hersh Chandarana, Nicole Hindman, Fang-Ming Deng, James S. Babb, Samir S. Taneja, Christian Geppert, Computed diffusion-weighted imaging of the prostate at 3 T: impact on image quality and tumour detection. European Radiology. ,vol. 23, pp. 3170- 3177 ,(2013) , 10.1007/S00330-013-2917-8
Kinzya B. Grant, Harsh K. Agarwal, Joanna H. Shih, Marcelino Bernardo, Yuxi Pang, Dagane Daar, Maria J. Merino, Bradford J. Wood, Peter A. Pinto, Peter L. Choyke, Baris Turkbey, Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer Abdominal Imaging. ,vol. 40, pp. 578- 586 ,(2015) , 10.1007/S00261-014-0246-2
S Feuerlein, M S Davenport, A Krishnaraj, E M Merkle, R T Gupta, Computed high b-value diffusion-weighted imaging improves lesion contrast and conspicuity in prostate cancer Prostate Cancer and Prostatic Diseases. ,vol. 18, pp. 155- 160 ,(2015) , 10.1038/PCAN.2015.5
Marnix C. Maas, Jurgen J. Fütterer, Tom W.J. Scheenen, Quantitative Evaluation of Computed High b Value Diffusion-Weighted Magnetic Resonance Imaging of the Prostate Investigative Radiology. ,vol. 48, pp. 779- 786 ,(2013) , 10.1097/RLI.0B013E31829705BB
Alan E. Hubbard, Jennifer Ahern, Nancy L. Fleischer, Mark Van der Laan, Sheri A. Lippman, Nicholas Jewell, Tim Bruckner, William A. Satariano, To GEE or not to GEE: comparing population average and mixed models for estimating the associations between neighborhood risk factors and health. Epidemiology. ,vol. 21, pp. 467- 474 ,(2010) , 10.1097/EDE.0B013E3181CAEB90