Sickling of red blood cells through rapid oxygen exchange in microfluidic drops

作者: Paul Abbyad , Pierre-Louis Tharaux , Jean-Louis Martin , Charles N. Baroud , Antigoni Alexandrou

DOI: 10.1039/C004390G

关键词: PolymerizationAnalytical chemistryOxygenDrop (liquid)HemoglobinDeoxygenationChemistryPartial pressureAqueous two-phase systemAqueous solution

摘要: We have developed a microfluidic approach to study the sickling of red blood cells associated with sickle cell anemia by rapidly varying oxygen partial pressure within flowing microdroplets. By using perfluorinated carrier oil as sink or source oxygen, level water droplets quickly equilibrates through exchange surrounding oil. This provides control over an aqueous drop ranging from 1 kPa ambient pressure, i.e. 21 kPa. The dynamics is characterized fluorescence lifetime measurements ruthenium compound dissolved in phase. gas shown occur primarily during and directly after droplet formation, 0.1 0.5 s depending on diameter speed. controlled deoxygenation used trigger polymerization hemoglobin cells, encapsulated drops. process observed polarization microscopy, which yields robust criterion detect based transmitted light intensity crossed polarizers.

参考文章(42)
William A. Eaton, James Hofrichter, Sickle cell hemoglobin polymerization. Advances in Protein Chemistry. ,vol. 40, pp. 63- 279 ,(1990) , 10.1016/S0065-3233(08)60287-9
WA Eaton, J Hofrichter, Hemoglobin S gelation and sickle cell disease. Blood. ,vol. 70, pp. 1245- 1266 ,(1987) , 10.1182/BLOOD.V70.5.1245.BLOODJOURNAL7051245
Ansgar Huebner, Dan Bratton, Graeme Whyte, Min Yang, Andrew J. deMello, Chris Abell, Florian Hollfelder, Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays Lab on a Chip. ,vol. 9, pp. 692- 698 ,(2009) , 10.1039/B813709A
Mark Polinkovsky, Edgar Gutierrez, Andre Levchenko, Alex Groisman, Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures. Lab on a Chip. ,vol. 9, pp. 1073- 1084 ,(2009) , 10.1039/B816191G
Charles N. Baroud, Jean-Pierre Delville, François Gallaire, Régis Wunenburger, Thermocapillary valve for droplet production and sorting. Physical Review E. ,vol. 75, pp. 046302- ,(2007) , 10.1103/PHYSREVE.75.046302
Manouk Abkarian, Colette Lartigue, Annie Viallat, Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Physical Review Letters. ,vol. 88, pp. 068103- ,(2002) , 10.1103/PHYSREVLETT.88.068103
Jenifer Clausell-Tormos, Diana Lieber, Jean-Christophe Baret, Abdeslam El-Harrak, Oliver J. Miller, Lucas Frenz, Joshua Blouwolff, Katherine J. Humphry, Sarah Köster, Honey Duan, Christian Holtze, David A. Weitz, Andrew D. Griffiths, Christoph A. Merten, Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms Chemistry & Biology. ,vol. 15, pp. 427- 437 ,(2008) , 10.1016/J.CHEMBIOL.2008.04.004
Maria Luisa Cordero, Daniel R. Burnham, Charles N. Baroud, David McGloin, Thermocapillary manipulation of droplets using holographic beam shaping: Microfluidic pin ball Applied Physics Letters. ,vol. 93, pp. 034107- ,(2008) , 10.1063/1.2952374
E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, M. L. Samuels, Droplet microfluidic technology for single-cell high-throughput screening Proceedings of the National Academy of Sciences of the United States of America. ,vol. 106, pp. 14195- 14200 ,(2009) , 10.1073/PNAS.0903542106
H. Y. Kueh, W. M. Brieher, T. J. Mitchison, Dynamic stabilization of actin filaments Proceedings of the National Academy of Sciences of the United States of America. ,vol. 105, pp. 16531- 16536 ,(2008) , 10.1073/PNAS.0807394105