FRACTAL DIMENSION AND LACUNARITY OF TRACTOGRAPHY IMAGES OF THE HUMAN BRAIN

作者: P. KATSALOULIS , D. A. VERGANELAKIS , A. PROVATA

DOI: 10.1142/S0218348X09004284

关键词: MathematicsPattern recognitionArtificial intelligenceFractal dimensionTopologyCluster analysisStandard deviationBox countingHuman brainTractographyLacunarity

摘要: Tractography images produced by Magnetic Resonance Imaging scans have been used to calculate the topology of neuron tracts in human brain. This technique gives neuroanatomical details, limited system resolution properties. In observed scales demonstrated statistical self-similar structure axons and its fractal dimensions were estimated using classic Box Counting technique. To assess degree clustering neural network, lacunarity was calculated Gliding method. The two-dimensional tractography taken from four subjects various angles different parts results that average dimension is approximately Df = 1.60 with standard deviation 0.11 for healthy human-brain tissues, it presents self-similarity features similar many other biological root-like structures.

参考文章(23)
G Landini, P I Murray, G P Misson, Local connected fractal dimensions and lacunarity analyses of 60 degrees fluorescein angiograms. Investigative Ophthalmology & Visual Science. ,vol. 36, pp. 2749- 2755 ,(1995)
P.J. Basser, J. Mattiello, D. LeBihan, MR diffusion tensor spectroscopy and imaging. Biophysical Journal. ,vol. 66, pp. 259- 267 ,(1994) , 10.1016/S0006-3495(94)80775-1
Marcel Jackowski, Chiu Yen Kao, Maolin Qiu, R. Todd Constable, Lawrence H. Staib, White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging. Medical Image Analysis. ,vol. 9, pp. 427- 440 ,(2005) , 10.1016/J.MEDIA.2005.05.008
Fereydoon Family, Barry R. Masters, Daniel E. Platt, Fractal pattern formation in human retinal vessels Physica D: Nonlinear Phenomena. ,vol. 38, pp. 98- 103 ,(1989) , 10.1016/0167-2789(89)90178-4
Dorothy A. Sipkins, David A. Cheresh, Mahmood R. Kazemi, Linda M. Nevin, Mark D. Bednarski, King C.P. Li, Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nature Medicine. ,vol. 4, pp. 623- 626 ,(1998) , 10.1038/NM0598-623
M. ZAMIR, Fractal dimensions and multifractility in vascular branching. Journal of Theoretical Biology. ,vol. 212, pp. 183- 190 ,(2001) , 10.1006/JTBI.2001.2367
K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 89, pp. 5675- 5679 ,(1992) , 10.1073/PNAS.89.12.5675
A. Eshel, On the fractal dimensions of a root system Plant Cell and Environment. ,vol. 21, pp. 247- 251 ,(1998) , 10.1046/J.1365-3040.1998.00252.X
Richard J. T. Wingate, Ian D. Thompson, Axonal target choice and dendritic development of ferret beta retinal ganglion cells. European Journal of Neuroscience. ,vol. 7, pp. 723- 731 ,(1995) , 10.1111/J.1460-9568.1995.TB00676.X
Michael Shlesinger, Bruce West, Complex fractal dimension of the bronchial tree. Physical Review Letters. ,vol. 67, pp. 2106- 2108 ,(1991) , 10.1103/PHYSREVLETT.67.2106